PIRSA Logo


PERIMETER INSTITUTE RECORDED SEMINAR ARCHIVE

PIRSA:14020134  ( MP4 Medium Res , MP3 , PDF ) Which Format?
Topological phases in graphene
Speaker(s): Zlatko Papic
Abstract: As realized for the first time in 1980s, quantum many-body systems in reduced spatial dimensions can sometimes undergo a special type of ordering which does not break any symmetry but introduces long-range entanglement and emergent excitations that have radically different properties from their original constituents. Most of our experimental knowledge of such ``topological" phases of matter comes from studies of two-dimensional electron gases in GaAs semiconductors in high magnetic fields and at low temperatures. In the first part of this talk, I will give an introduction to these systems and review some latest theoretical developments related to their entanglement properties. In the second part, I will discuss new possibilities
for experimental realizations of topological phases in bilayer graphene. I will present evidence that this material supports an ``even-denominator" fractional state, related to the Moore-Read state, whose observation has recently been reported. Finally, I will outline several proposals based on the tunability of the electron-electron interactions in bilayer graphene which might enable further experimental progress beyond GaAs.
Date: 10/02/2014 - 9:45 am
Valid XHTML 1.0!