Exact holographic mapping, tensor networks and spacetime geometry Speaker(s): XiaoLiang Qi
Abstract:
Holographic duality is a duality between gravitational systems and nongravitational systems. In this talk, I will propose a different approach for understanding holographic duality named as the exact holographic mapping. The key idea of this approach can be summarized by two points: 1) The bulk theory and boundary theory are related by a unitary mapping in the Hilbert space. 2) Spacetime geometry is determined by the structure of correlations and quantum entanglement in a quantum state. When applied to lattice systems, the holographic mapping is defined by a unitary tensor network. For free fermion boundary theories, I will discuss how different bulk geometries are obtained as dual theories of different boundary states. A particularly interesting case is the AdS black hole geometry and the interpretation of the interior of a black hole. We will also discuss dual geometries of topological states of matter. Date: 27/02/2015  11:00 am
Series: Condensed Matter
