PIRSA Logo


PERIMETER INSTITUTE RECORDED SEMINAR ARCHIVE

PIRSA:20060037  ( MP4 Medium Res , MP3 , PDF ) Which Format?
Categorification of the Hecke algebra at roots of unity.
Speaker(s): Ben Elias
Abstract: Categorical representation theory is filled with graded additive categories (defined by generators and relations) whose Grothendieck groups are algebras over mathbb{Z}[q,q^{-1}]. For example, Khovanov-Lauda-Rouquier (KLR) algebras categorify the quantum group, and the diagrammatic Hecke categories categorify Hecke algebras. Khovanov introduced Hopfological algebra in 2006 as a method to potentially categorify the specialization of these mathbb{Z}[q,q^{-1}]-algebras at q = zeta_n a root of unity. The schtick is this: one equips the category (e.g. the KLR algebra) with a derivation d of degree 2, which satisfies d^p = 0 after specialization to characteristic p, making this specialization into a p-dg algebra. The p-dg Grothendieck group of a p-dg algebra is automatically a module over mathbb{Z}[zeta_{2p}]... but it is NOT automatically the specialization of the ordinary Grothendieck group at a root of unity! Upgrading the categorification to a p-dg algebra was done for quantum groups by Qi-Khovanov and Qi-Elias. Recently, Qi-Elias accomplished the task for the diagrammatic Hecke algebra in type A, and ruled out the possibility for most other types. Now the question is: what IS the p-dg Grothendieck group? Do you get the quantum group/hecke algebra at a root of unity, or not? This is a really hard question, and currently the only techniques for establishing such a result involve explicit knowledge of all the important idempotents in the category. These techniques sufficed for quantum mathfrak{sl}_n with n le 3, but new techniques are required to make further progress. After reviewing the theory of p-dg algebras and their Grothendieck groups, we will present some new techniques and conjectures, which we hope will blow your mind. Everything is joint with You Qi.
Date: 26/06/2020 - 2:00 pm
Valid XHTML 1.0!