PIRSA:22120019

Hunting for Light DM with Quantum Sensors

APA

Murgui, C. (2022). Hunting for Light DM with Quantum Sensors. Perimeter Institute. https://pirsa.org/22120019

MLA

Murgui, Clara. Hunting for Light DM with Quantum Sensors. Perimeter Institute, Dec. 13, 2022, https://pirsa.org/22120019

BibTex

          @misc{ pirsa_PIRSA:22120019,
            doi = {10.48660/22120019},
            url = {https://pirsa.org/22120019},
            author = {Murgui, Clara},
            keywords = {Particle Physics},
            language = {en},
            title = {Hunting for Light DM with Quantum Sensors},
            publisher = {Perimeter Institute},
            year = {2022},
            month = {dec},
            note = {PIRSA:22120019 see, \url{https://pirsa.org}}
          }
          

Clara Murgui California Institute of Technology (Caltech)

Collection
Talk Type Scientific Series

Abstract

Direct detection experiments search for dark matter through its potential interactions with the SM particles. However, light dark matter models with particle masses below the GeV scale are still largely unconstrained. As we will see in this talk, sensitivity to such small momentum transfer can benefit from quantum sensors, which employ fundamental quantum mechanical phenomena to notice energy depositions otherwise unreachable. Quantum sensors can considerably extend the range in dark matter mass of traditional WIMP experiments and be complementary to other direct detection methods. In the first part of the talk, I will examine a proposal to use atom interferometers to detect a light dark matter subcomponent at sub-GeV masses. DM scattering off of one “arm” of the atom interferometer can cause trackable decoherence and phase shifts. Two key factors render atom interferometers highly competitive experiments for very low masses: they are sensitive to extremely low momentum deposition and their coherent atoms give them a boost in sensitivity. On the second part of the talk, I will present a new proposal to search for axions with optomechanical cavities.  As we will see, the Bose-enhancement of a final state coherent population of photons or phonons can help overcoming the strong suppression from the axion to photon coupling. A unique advantage of this novel search, axioptomechanics, is that the cavity size need no longer be matched to the axion mass, which allows to probe a wide window of axion masses.

Zoom Link:  https://pitp.zoom.us/j/92645586400?pwd=bm1VUEVqUzNOOXV2VnhEUkJtdWZrZz09