GPTs and the probabilistic foundations of quantum theory - mini-course

7 talks
-
Collection NumberC24021
Collection TypeCourse
Description

Classical probability theory makes the (mostly, tacit) assumption that any two random experiments can be performed jointly.  This assumption seems to fail in quantum theory.  A rapidly growing literature seeks to understand QM by placing it in a much broader mathematical landscape of ``generalized probabilistic theories", or GPTs,  in which incompatible experiments are permitted.   Among other things, this effort has led to  (i) a better appreciation that many "characteristically quantum" phenomena (e.g., entanglement)  are in fact generic to non-classical probabilistic theories, (ii) a suite of reconstructions of (mostly, finite-dimensional) QM from small packages of assumptions of a probabilistic or operational nature, and (iii) a clearer view of the options available for generalizing QM.  This course will offer a survey of this literature,  starting from scratch and concluding with a discussion of recent developments. 

Mathematical prerequisites: finite-dimensional linear algebra, ideally including tensor products and duality, plus some exposure to category theory (though I will briefly review this material as needed).  

Scheduling note: There will be 5 lectures from March 12-26, then a gap of two weeks before the final 2 lectures held April 16 & 18.

Format: In-person only; lectures will be recorded for PIRSA but not live on Zoom.

Displaying 1 - 7 of 7