PIRSA Logo


PERIMETER INSTITUTE RECORDED SEMINAR ARCHIVE

Pirsa: 20010023 - A deformation invariant of 1+1D SQFTs

Speaker(s):

Theo Johnson-Freyd

Playing this video requires MP4 / H.264 support to be configured and enabled in your browser.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Download Video

Abstract:

The elliptic genus is a powerful deformation invariant of 1+1D SQFTs: if it is nonzero, then it protects the SQFT from admitting a deformation to one with spontaneous supersymmetry breaking. I will describe a "secondary" invariant, defined in terms of mock modularity, that goes beyond the elliptic genus, protecting SQFTs with vanishing elliptic genus. The existence of this invariant supports the hypothesis that the space of minimally supersymmetric 1+1D SQFTs provides a geometric model for universal elliptic cohomology. Based on joint works with D. Gaiotto and E. Witten.

Valid XHTML 1.0!