Title: Introduction to quantum gravity

Date: Jan 18, 2006 06:30 PM

URL: http://pirsa.org/06010008

Abstract: This is an introduction to background independent quantum theories of gravity, with a focus on loop quantum gravity and related approaches.

Basic texts:

- Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005
- Quantum gravity with a positive cosmological constant, Lee Smolin, hep-th/0209079
- Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048
- Gauge fields, knots and gravity, JC Baez, JP Muniain

Prerequisites:

- undergraduate quantum mechanics
- basics of classical gauge field theories
- basic general relativity
- hamiltonian and lagrangian mechanics
- basics of lie algebras
The basic structure of QCD...
\langle GR \Rightarrow QR \rangle
The basic structure of LQG

Intro GR as a gauge theory
The basic structure of LQG

Intro GR as a gauge theory

hep-th/0201079
I The basic structure of LQG -
hep-th/0408048

II Intro GR as a gauge theory
hep-th/0201079
Sections 2.3 6
 (today)
Fix Spatial Topology $S^3 = \Sigma$
Fix Spatial Topology $S^3 = \mathbb{E}$
Fix spatial topology $S^3 - \Sigma$

Graph
Fix spatial Topology $S^3 = \mathbb{E}$

All graphs $P = \{ \}$
Fix Spatial Topology \(S^3 = \mathbb{E} \)

All Graphs \(\mathcal{G} = \{ \text{all graphs} \} \)
Fix spatial topology

\[S^3 = \mathbb{E} \]

All graphs \(P \)

\[G = \{ \text{all graphs} \} \]

Finite or infinite loops
Fix Spatial Topology \[S^3 = \mathbb{E} \]

All graphs \[G \]
Fix spatial topology $S^3 = \mathbb{E}$

All graphs $P = \{ \text{all graphs} \}$

$G = \{ \text{all graphs} \}$

Finite set of nodes and links
Fix spatial topology

\[S^3 = \Omega \]

all graphs \(P = \{ \text{all graphs} \} \)

finite \(G \triangleleft \{ \text{all graphs} \} \)

\(\{ G \} = \{ \text{all embeddings of } G \text{ into } \Sigma \text{ up to topology} \} \)
Fix spatial topology $S^3 = \Sigma$

All graphs $P = \{ G \}$

Embeddings of G into Σ up to topology countable set
Fix Spatial Topology

All Graphs \(\mathcal{P} = \{ \text{all graphs} \} \)

\(G = \{ \text{all graphs} \} \) is finite set of \(\text{num}_3 \) inputs

\(\{ G \} = \{ \text{all } G \} \rightarrow \) subspace of \(\Sigma \) up to topology

Countable set

\(S^3 = \mathbb{E} \)
$\phi_3 \sim$ orthogonal basis
Toposy

\[S^3 = \mathbb{S} \]

\(\{g\} \mapsto \text{fill \ embeddings \ to \ get \ homeomorphism} \)

\(\text{into } \mathcal{F} \text{ wrt topology} \)

Orthogonal basis
Topology

\[S^3 = \mathbb{C} \]

\[\Phi \times = \text{orthonormal basis} \]
$\mathcal{H}_3 = \text{orthonormal basis} \quad 1^a >$

$1^a > = \sum_a^3$
\[x_3 = \text{orthonormal basis} \quad |\phi\rangle \]
\[|\psi\rangle = \sum c_i |\phi_i\rangle \quad \sum |c_i|^2 = 1 \]
\(\| \beta_3 \| = \text{orthonormal basis} \)
\(|\beta_3 > = \sum a_\beta | \beta > \)
\(\sum_{\beta} |a_\beta|^2 = 1 \)
\(\langle \beta_1 | \beta_3 > = 5 \beta_3 \)
$\hat{H}_\psi = \text{orthonormal basis} \quad |\psi\rangle \quad \text{Separable}$

$|\psi\rangle = \sum c_n |\hat{n}\rangle \quad \sum |c_n|^2 = 1$

$\langle \psi | \psi \rangle = \delta_{\psi \bar{\psi}}$
\(\phi_3 = \text{orthonormal basis} \)

\[| \phi \rangle = \sum \alpha \phi \]

\[| \alpha \rangle^2 = 1 \]

\[\langle \phi \phi | = \delta \phi \phi \]
$\mathcal{H}_3 = \text{orthonormal basis } |x\rangle \quad \text{Separable}$

$|x\rangle = \sum \alpha_n |n\rangle \quad \sum |\alpha_n|^2 = 1$

$\langle \phi | \psi \rangle = \delta_{\phi \psi}$

$\triangledown \text{Volume operator }$
\[x = \text{orthonormal basis} \]

\[|x > = \sum a_n |p_n > \quad \leq \quad l a_n^2 = 1 \]

\[\langle p_m | p_n > = \delta_{mn} \]

Volume operator in \(\mathbb{H}^3 \)
\(\mathbf{H}_2 \) = orthonormal basis \(|\varphi\rangle \)

\[|\psi\rangle = \sum \alpha_n |\varphi_n\rangle \leq \sum |\alpha_n|^2 = 1 \]

\[\langle \varphi_1 | \varphi_2 \rangle = \delta_{\varphi_1 \varphi_2} \]

Volume operator in \(\mathbf{H}_3 \)

\[\langle \psi | \varphi_2 \rangle = |\varphi_2\rangle \varphi \]

\[V = \frac{1}{n!} \text{ number of 4 or higher valent nodes} \]
Spatial Topology $S^3 = \Sigma$

14$\rho > 0 \sum_{i} a_i$

$< F I R' > = 5$

Volume operator in Σ^3
Spatial Topology

$S^3 = \Xi$

$\{ \}$ fill embedded set with G?

Ξ null topology

$\phi_k = \text{orthonormal basis}$

$14 \Rightarrow \Xi \leq \alpha_p$

$\text{Volume operation in } \Xi^3$
\[h = \text{orthonormal basis} \quad 1 \rightarrow \text{Separable} \]

\[|\Psi\rangle = \sum_{q} \langle \Psi_{q} | \Psi \rangle \quad \frac{1}{2} |\psi_{1}|^2 = 1 \]

\[\langle \Psi_{1} | \Psi_{2} \rangle = \delta_{12} \]

Volume operator in \(H_{3} \)

\[\langle \Psi_{1} | \Psi_{2} \rangle = \langle \Psi_{1} | \Psi_{2} \rangle \]

\[V_{a} = \frac{r^{3}}{R} \quad \text{number of 4 or higher valent nuclei} \]
$\tilde{\mathbf{Z}} = \text{orthonormal basis}$

$|\rangle = \sum a_n |\tilde{\mathbf{n}}\rangle$

$\langle \tilde{\mathbf{n}} | = \frac{1}{\sqrt{\Omega}}$

$|\mathbf{\tilde{r}}\rangle = \mathbf{\tilde{r}}$

Volume operator in \mathbb{H}^3

$|\mathbf{\tilde{r}}\rangle - |\mathbf{\tilde{r}}\rangle$

$V_A = \frac{\Omega}{4\pi} \text{ number of short holes}$
$\mathbf{e}_3 = \text{orthonormal basis} \quad \langle \mathbf{e}_3 | \mathbf{e}_3 \rangle = \frac{\epsilon}{\hbar} \quad \frac{\sqrt{3}}{2} \leq \frac{\epsilon}{\hbar} \leq \frac{\sqrt{3}}{3} \quad |\epsilon| \hbar^2 = 1$

$\langle \phi | \phi \rangle = \sum_{i=1}^{\infty} \phi_i \phi_i^*$

Volume operator in H_3:

$\langle \phi | \phi \rangle - \langle \phi | \phi \rangle V_n$

$V_n = \frac{3}{h} \varepsilon$ number of 4-orbital valence hole
\[z = \text{boundary} \quad D^3 \quad \partial z = s^2 \]
\[S = \text{boundary} \quad D^3 \quad \partial S = S^2 \]

Area of boundary
All Graphs $\mathcal{G} = \{\text{all graphs}\}$

Finite \iff no boundary

$E < 3$ for boundary

{G} = $\{\text{all embeddings into 3-up topology}\}$

Counter set
All graphs \(\mathcal{G} = \{ G \} \) where \(G = \sigma \{ \text{all graphs} \} \).

If \(\exists \) has boundary

Graphs can have edges and on boundary

\(G \) is embeddings into \(\exists \) up topology countable set
All graphs \(\mathcal{P} = \{ G \mid \text{all graphs} \} \)

Finite set of \(\mathcal{P}_3 \)

1 if \(\exists \) has boundary

\[\{ G \} = \{ \text{all embeddings into 3 up to topology count the set} \} \]

Graphs can have edges end on boundary
All graphs $P = \{ G \}$
where $G = \{ \text{all graphs} \}$

Finite set of node-set lists $1 \leq \ell \leq \text{has boundary}$

Graphs can have edges end on boundary
\[V_\mathfrak{f} = \mathfrak{f}^3 \text{ number of 4 or higher valent nodes} \]

\[\Sigma = \text{boundary} \]

\[D^3 \quad \Sigma = S^2 \]

Area of boundary \[\mathcal{A} \geq \mathcal{L} \]

\[\left| \mathcal{L} \right|^2 = \left| \mathcal{L} \right|^2 \mathfrak{f} \]
$S = \text{boundary } D^3 \rightarrow \varepsilon = S^2$

Area of boundary $A[\varepsilon] = |\mathbf{r} \rangle \langle \mathbf{r}|$

$\mathcal{A} = \varepsilon \# \text{ of punctures}$
All Graphs $P = \{ \text{all graphs} \}$

$G = \{ \text{all graphs} \}$

\mathcal{G} has boundary

$G \times \{ \text{all embeddings} \}$

Into \mathcal{G} up to topology (countable set)

Graphs can have edges and an boundary
\[V_f = \prod \] number of \(f \) or higher rotation holes

\[s = \text{boundary} \quad D^3 \quad d \Xi = s^2 \]

Area of boundary \[A[\Xi] \quad m \geq 1 \]

\[\eta^2 = \text{the } \# \text{ of punctures} \]
$z = \text{boundary}$
$D^3 \partial z = S^2$

Area of boundary $\hat{A}[z] | \psi > = | \hat{p} > \varphi$

$\frac{\partial}{\partial t} = 2p \rho \text{ # of punctures}$
\[V = \text{number of 4 and higher valent holes} \]

\[z = \text{boundary} \]

\[D^3 \quad d \varepsilon = s^2 \]

\[\text{Area of boundary} \quad A[\varepsilon] \quad \langle \varepsilon \rangle = 1 \langle \varepsilon \rangle \quad q_{n} \]

\[q_{p} = \text{Re} \quad \# \text{of punctures} \]
\[V_{\beta} = \frac{\beta^5}{\pi} \text{ number of } 4\text{-or higher} \text{ valued nodes} \]

\[\Sigma = \text{boundary} \quad D^3 = \Sigma = S^2 \]

Area of boundary \[\mathcal{A}[\Sigma] \quad \mathcal{A}[\Sigma] = \mathcal{A}[\beta] \]

History \[\mathcal{P}_H = \frac{\ell^2}{\pi} \text{ # of punctures} \]

Local dynamics
All Graphs $\mathcal{P} = \{ \text{all graphs} \}$.

Finite set of non-singular
$G \subseteq \mathcal{P}$ has boundary
$\mathcal{B} = \{ G \}$

Graphs can have edges and a boundary

$\Gamma \subseteq \mathcal{P}$ has topology
$\mathcal{\Gamma} = \{ \Gamma \}$

Embedding $\mathcal{\Gamma}$ into a topological
compact set

$G \in \mathcal{\Gamma}$
Local dynamics

History

Area of boundary $A_{\partial \Omega} = 10\pi A_p$

$\Phi = \frac{1}{2} \frac{\partial^2 \phi}{\partial t^2} + U \phi$

$\nabla^2 \phi = \rho$

$\nabla \cdot \phi = 0$

$D_{\Omega} = \frac{\partial}{\partial t}$

$S_{a,b} = 0$

$3 = \sum_{n=0}^{\infty} n^2$

$V_n = \frac{e^{im\theta}}{R}$ number of 4π-flux through faces
\(z = \text{boundary} \quad D^3 \quad d^2 z = S^2 \quad \sum A, \nabla = 0 \)

Area of boundary \(\hat{A} \mid \Gamma \rangle = \hat{1} \langle \hat{\rho} \rangle \)

\(\hat{\rho} = \hat{p} \hat{e} \) of punctures

History

Local dynamics

meas local moves
\[\nu_{\text{P}} = \nu_{\text{R}} \quad \text{number of 4 or higher valent nodes} \]

\[\mathcal{S} = \text{boundary} \quad D^3 \quad \partial \mathcal{S} = \mathcal{S}^2 \]

\[\text{Area of boundary} \quad \hat{A}[\mathcal{S}] |_{\mathcal{P}} = \langle \mathcal{P} | \hat{a}_{\mathcal{P}} \rangle \]

\[\hat{a}_{\mathcal{P}} = \nu_{\text{P}} \quad \text{at punctures} \]

\[\mathcal{P} = \mathcal{P}_{\text{R}} \quad \text{history} \]

\[3 \quad \text{valent nodes} \]

\[\text{Local dynamics} \quad \text{moves local} \]

\[\text{means local} \]

\[\text{moves} \]
\[V = \sum \frac{1}{2} \text{number of 4- or higher valent nodes} \]

\[\mathbb{Z} = \text{boundary} \]

\[\Delta^3 \cdot \Delta^2 = \mathbf{S}^2 \]

\[\mathbf{A}[\mathbf{E}] \mid \Gamma \rangle = \mid \mathbf{P} \rangle \Psi_P \]

Area of boundary \[\mathbf{A}[\mathbf{E}] \mid \Gamma \rangle = \mid \mathbf{P} \rangle \Psi_P \]

\[G_P = \begin{array}{c} \text{History} \\
\text{3-valent nodes} \\
\text{3-valent nodes} \\
\text{Local dynamics}
\end{array} \]

\[\text{Local dynamics means local moves} \]
\(z = \text{boundary} \)

\(D^3 \partial z = S^2 \)

\[\hat{A}[\chi] \left| \Gamma \right> = \hat{R} \left| \varphi \right> \]

\[\hat{R} \varphi = \hat{R} \varphi \text{ at punctures} \]

3-valent nodes

History

Local dynamics means local moves
\[V_p = \frac{d^3}{d
u^3} \text{ number of 4 or higher valent nodes} \]

\[\Sigma \Lambda, V^\gamma = 0 \]

Area of boundary \[\hat{A} \left[\Omega \right] | \Gamma > = | \Gamma > \psi \]

\[\psi_p = \frac{d^2}{d
u^2} \text{ # of punctures} \]

History

3-valent nodes

Local dynamics means local moves

\[\text{expansion} \]
\[V = \pi^2 \text{ number of torus holes} \]

\[z = \text{boundary} \]

\[D^3 \partial z = S^2 \]

\[\sum [A, V] = 0 \]

Area of boundary \(\hat{A} [\partial z] | \Gamma > = 1 \hat{\rho} [\partial z] \)

History \(\mathbb{R}^2 \) hot punctures

Local dynamics means local moves

3-vector moves

\[\hat{\phi} = \mathbb{R}^3 \]
\[V_F = \ell^3 \text{ number of 4 or higher valent nodes} \]

\[S = \text{boundary}, \quad D^3 \quad dS = \frac{S^2}{2} \]

\[\text{Area of boundary} \quad \hat{A}[\epsilon \delta] \gamma = 1^3 \quad \nu_F \]

\[\nu_F = \ell^2 \frac{\Gamma}{4\pi} \quad \text{of punctures} \]

\[\nu_F = \ell R \quad \text{of punctures} \]

History

Local dynamics means local moves

3-valent nodes

\[\Rightarrow \text{expansion} \]
4-valent nodes
4. Valen nodes

Diagram showing two geometric shapes connected by an arrow.
\[V^n = \mathbb{R}^3 \quad \text{number of 4 or higher valent nodes} \]

\[2 = \text{boundary of } D^3 \]
\[d^2 = S^2 \]
\[\sum A, \nabla S = 0 \]

Area of boundary \[\hat{A}^{[3]}|\Gamma\rangle = |\hat{\rho}\rangle \varphi \]

History

Local dynamics

3-valent nodes

\(\text{contraction} \)

\(\text{expansion} \)
All graphs \(P = \{ \text{all graphs} \} \)

\(G = \{ \text{all graphs} \} \)

Finite, if \(\exists \text{ boundary} \)

\[G \] is embedded into \(\exists \text{ up to topology} \)

compact set

Graphs can have edges, and on boundary
\[V_\beta = \ell_{P}^{2} \text{ number of } \ell \text{ or higher valent holes} \]

\[S = \text{boundary} \quad D^3 = 3^3 = S^2 \]

Area of boundary \[A[E] = |\gamma > = |\ell > \gamma' \]

\[\gamma' = \ell_{P}^{2} \text{ # of punctures} \]

History

3-valent nodes

Local dynamics means local moves

Contract

Expansion

Not frutal
4-valent nodes

Measurable Ergodic:
If you can go from any input graph to any output graph in a finite number of moves.
4-valent nodes

Markov Ergodic:
In you can go from any input graph to any output graph in a finite hot move.
4-valent nodes

Maximally Ergodic:
If you can go from any input graph to any output graph in a finite # of moves.
\[V_{P^2} = \frac{1}{P_1} \text{ number of 4ier hyperl valent nodes} \]

\[S = \text{boundary} \quad D^3 \quad \partial D^3 = S^2 \quad \partial S = 0 \]

Area of boundary \[\hat{A}[\varepsilon] \mid \gamma \rangle = | \hat{\gamma} \rangle \phi \]

\[\Phi = \frac{L^2}{P_2} \text{ # of punctures} \]

History

Local dynamics

Contraction

Expansion

Not physical
\[\mathcal{V}_P = \mathfrak{P}_P \text{ number of 4 or higher valent nodes} \]

\[\mathcal{S} = \text{boundary} \quad \mathcal{D}^3 \quad \partial \mathcal{E} = \mathcal{S}^2 \]

Area of boundary \[\mathcal{A} \left[\mathcal{E} \right] \mid \mathcal{E} \rangle = \mathcal{P} \langle \mathcal{P} \] \[\mathcal{K} \mathcal{P} = \mathcal{P}_3 \text{ # of punctures} \]

History

Local dynamics means local moves

3-valent nodes

\[\text{contract} \quad \Rightarrow \quad \text{expansion} \]

\text{Not physical}
$z = \text{boundary} \quad D^3 \quad \partial \Sigma = S^2 \quad \Sigma \partial A, \Sigma \partial B = 0$

Area of boundary $A[\Sigma] \mid \gamma > = | \Phi > \varphi$

$\varphi_H = \frac{L^2}{\ell_p^2} \# \text{of punctures}$

History

3-valent nodes

\leftrightarrow contraction

\leftrightarrow expansion

Local dynamics means local moves

Not physical
\(V_p = \sum \) number of 4+ higher valent nodes

\[d^3 \; \partial = \partial^2 \]

Area of boundary
\[A [\partial] \mid \Gamma > = | \Gamma > q_p \]

\[q_p = \frac{r_p^2}{r_p} \text{ # of punctures} \]

History
3-valent nodes

Local dynamics
means local moves

Nex pronic
\[V_p = k_p \]
number of 4th order valent nodes

\[S = \text{boundary}, \quad D^3 \partial D^2 = S^2 \]
\[\text{Area of boundary} \quad A[\partial \Sigma] | r \rangle = | r \rangle \langle r | \]

\[g_F = \frac{r^2}{4} \text{ # of punctures} \]

History

3-valent nodes

\[\xrightarrow{\text{contract}} \]

Local dynamics

\[\xrightarrow{\text{expansion}} \]

\[\text{Not analytic} \]

Exchanges
4-valent nodes

Morse Exodice: Let γ be a closed curve.
If you can go from any input graph to any output graph in a finite number of moves.
history (3-valent)
\[\pi_0 \rightarrow \pi_1 \rightarrow \ldots \rightarrow \pi_n \]
each move is
$z = \text{boundary}$

$D^3 \partial z = S^2$

$[A^3 \partial] | \Gamma > = | \Gamma > \psi$

Area of boundary

$\sum \frac{\partial x}{\partial \tau} = 0$

History

B-valent nodes

Local dynamics means local moves

Not preserved

$\mathcal{G} \psi = \exp \# \text{of punctures}$

Exchanges
history \(C_3 \)-valent

\(\Phi_0 \rightarrow \Phi_1 \rightarrow \ldots \rightarrow \Phi_n \)

each move is local move
4-valent nodes

Maximal Ergodicity:

If you can go from any input graph to any output graph in a finite number of moves.
4-valent nodes

Non-ergodic:

Is there a graph such that you can go from any input graph to any output graph in a finite set of moves?

Ergodic:

In a finite set of moves...
4. Valant Nodes

Meaning Ergodic: If you can go from any input graph to any output graph in a finite number of moves.
4-valent nodes

Morse Ergodic:
Is you can go from any input graph to any output graph in a finite nodal move...
history (3-valent) \rightarrow \text{foam.}

\Gamma_0 \rightarrow \Gamma_1 \rightarrow \ldots \rightarrow \Gamma_n

each move is local move
history (3-valent) \rightarrow \text{fourth}

Γ_0 \rightarrow \mathcal{A} \rightarrow \ldots \rightarrow \mathcal{F}_n$

each move is local move
history (3-valent) \[\eta \rightarrow \hat{\eta} \rightarrow \cdots \rightarrow \hat{\eta}_n \]

each move is local move

Dynamics, Absorb, Annihilate, Exchange
history (3-valent) \[\downarrow \]
\[\Gamma_0 \Rightarrow \Gamma_1 \Rightarrow \ldots \Rightarrow \Gamma_n \]
each move is local move

Dynamics close, count, actuate

history has an amplitude \[A(\mathcal{F}) = \prod_{\text{move}} A(\text{move}) \]
4-valent nodes

If you can go from any input graph to any output graph in a finite number of moves.
4-valent nodes

If you can go from any node graph to any other graph in a finite number of moves.

Dynamics:\begin{align*}
 \pi_0 &\to \pi_1 &\to \cdots &\to \pi_n \\
 \text{every move is local move}
\end{align*}

History: \(n \)-valent \(H \) is given by

\[a(H) = \prod_{\text{vertex}} a(\text{out}) \]
4-valent nodes

If you can go from any input graph to any output graph in a finite set moves.

history (4-valent)

\[\xi_0 \to \xi_1 \to \ldots \to \xi_n \]

each move is localwine

Dynamics

\[\text{Above, Actn, Actn} \]

\[\text{history basis amplitudes} \]

\[a(\xi) = \prod a(\xi_{\text{actn}}) \]

Solution amplitude

\[\xi \to \xi' \]

\[a_{\xi \to \xi'} = \sum_{\xi''} a(\xi) \]

\[\xi'' \to \xi' \]
Consider the moves P, Q.
Consider the moves P, Q

$P > Q$ if P acts on a subgraph altered by Q
4-valent nodes

Morera-Euclidean: Is there a configuration
if you can go from any input graph to any output graph
in a finite # of moves.
4-valent nodes

Metric Euclidean: but requires a fundamental group

If you can go from any input graph to any output graph in a finite number of moves.
Consider two moves P, Q.

If P acts on a subgraph altered by Q, then $P > Q$.

If P acts on a subgraph altered by Q.
Consider the moves P, Q.

$P \rightarrow Q$ if P occurs on a subgraph adjacent by Q.

Par if not "cause!"
4. Valant Nodes

Morse-Engel: There exists an
if you can go from any input
graph to any output graph
in a finite number of moves.
4-valent nodes

If you can go from any input graph to any output graph in a finite number of steps.

Example diagrams:
- Input to Output
- $\text{Intermediate steps}$
4. Valant Nodes

Markov Ergodic: In a finite number of moves, you can go from any input graph to any output graph.
Consider two moves P, Q

$P \geq Q$, if P acts on a subgraph altered by Q

Par, if not "cause" moves are a Partially ordered set
Consider the moves P, Q.

$P \succ Q$ if P acts on a subgraph altered by Q.

$P \parallel R$ if not "causal".

Moves are a partially ordered set "causal set".
history (re-entrant) \[\mathcal{H} \]

\[r_0 \rightarrow r_1 \rightarrow \ldots \rightarrow r_{\text{end}} \]

each move is local

Dynamics: q, q, q, q, q, q, q, q

\[\text{E}(\mathcal{A}, \mathcal{B}) = \prod_{\text{move}} \text{E}(\mathcal{A}, \mathcal{B}) \]

\begin{align*}
\text{Evolution amplitude} & \quad r \rightarrow r' = E(r, r') \\
& = \sum_{\alpha} a(\alpha) \\
& \quad |r \rightarrow r'|
\end{align*}

\[E(r, r', \mathcal{A}) = \sum_{\alpha} a(\alpha(\mathcal{A})) \]
Spatial Topology

$S^3 = \{G\}$

$G = \{\text{all graphs\}}$

$\exists \varepsilon$ has boundary

$\{G\} = \{\text{all embeddings of } G \text{ into } \Sigma \text{ up to topology}\}$

Graphs can have edges and an boundary
more nodes... more moves
spins $SU(2)$ rep $j = \frac{1}{2}, \frac{3}{2}, \ldots$
spins $SU(2)$ rep \(j = \frac{1}{2}, \frac{3}{2}, \cdots \)

\[r_j = \sqrt{2j+1} \]
spins \quad SU(2) \ \text{rep} \quad j = \frac{1}{2}, \frac{3}{2}, \ldots

don\text{ition} \quad r_j \oplus r_k = j \oplus k \quad r_j = V_{2j+1}

multiplying

complex \quad \text{vector spin}
spins $SU(2)$ rep \(j = \frac{1}{2}, \frac{3}{2}, \ldots \)

addition \(r_j \oplus r_k = j \oplus k \) \(r_j = V_{2j + 1} \)

multiplying \(j \otimes k \)

complex vector spin
Spins $SU(2)$ rep $j = \frac{1}{2}, \frac{3}{2}, \cdots$

Addition $j_1 \otimes j_2 = \sum_k j_k$ $r_j = \sqrt{2j+1}$

Multiplication $j \otimes k = \sum_l \begin{pmatrix} l \end{pmatrix}_l$ $l \leq |j-k|, l \leq j+k$
spins \quad SU(2) \quad rep \quad j = \frac{1}{2}, 1, \frac{3}{2}, \ldots

addition \quad r_j \oplus r_k = \sum \mathbb{C} \quad r_j = \sqrt{2j + 1}

multiplication \quad j \otimes k = \sum_l \mathbb{C} \quad \text{commutative}

complex vector spin
Spins $SU(2)$ rep $j = \frac{1}{2}, \frac{3}{2}, \ldots$ complex vector spin

Addition: $r_j \oplus r_k = j \oplus k$, $j' = \sqrt{2j + 1}$

Multiplication: $j \otimes k = \sum \binom{j + k}{j-k} l^2 l \sim$ commutative

Is $j \otimes k \otimes l \in \mathfrak{so}$ rep
Spins \text{ } SU(2) \text{ rep } j = \frac{1}{2}, \frac{3}{2}, \ldots

Addition: \quad r_j \oplus r_k = r_{j+k} \quad r_j = \sqrt{2j+1}

Multiplication: \quad r_j \otimes r_k = \sum_{l=j-k}^{j+k} r_l \quad \text{commutative}

r_j \otimes r_k \oplus r_j \otimes r_k \text{ is O rep}

Facts about SU(2): Yes - unique

Triangle relation: \quad r \leq j+k

No

Local dynamics

Hist
spins
$SU(2)$ rep $j = \frac{1}{2}, \frac{3}{2}, \ldots$

addition $r_j \oplus r_k = j \oplus k$

multiplication $r_j \otimes r_k = \pi \otimes \lambda$ commutative

$\pi \otimes \lambda \otimes \lambda \\ \otimes r_k$

facts about $SU(2)$ $\otimes \lambda \otimes \lambda$

no $\pi \otimes \lambda \otimes \lambda$

$\lambda \otimes r_k$

Diagram: $\lambda \otimes r_k$
addition \(r \odot r, \otimes k \Rightarrow r^* = \sqrt{2k+1} \)

multiplication \(\psi \otimes k = \sum l \) commutative

Is \(\psi \otimes k \otimes l \Rightarrow \text{rep} \not\Rightarrow \mu k + l \text{ even} \)

Facts about \(SU(2) \) \text{ is unique} triangle relation \(e3 \leq 1 + k \)

spin network (Penrose 67)
Addition: $r_1 \otimes r_2 \cdot k \cdot Y_r = V_{2\ell + 1}$

Multiplication: $Y \otimes k = \sum l \otimes Y_{l \otimes k}$

Commutative

Is $\otimes K \otimes l \Rightarrow$ rep $\otimes l \otimes k$ even

Facts about $SU(\ell)$

Yes - unique triangle relation

No

Good triplet

Spin networks (Penrose 67)

Graph I where edges $I \leftrightarrow \bar{I}$ Y_{I} all good
addition \(r \otimes k \cdot j \otimes k \) \(y \cdot y = \sqrt{y(y+1)} \)

multiplication \(j \otimes k = \sum \varepsilon \ell \left(\begin{array}{c} \ell \varepsilon(\ell+1) \\ell+1 \varepsilon \end{array} \right) \) commuting

Is \(j \otimes k \otimes \ell \) a rep \(\chi \) even \(\chi k + k + k \) even

Facts about \(SU(2) \) Yes - unique triangle relation \(\varepsilon \)

Good triplet \(k \leq \ell \)

spin network (Penrose 67) (3 velocity)

graph \(G \) where edges \(\rightarrow \) \(\chi \) \(\chi \) all good

Spinnet \(\rightarrow \) \(\chi \) all good
$|\psi\rangle = \sum a_n |\psi_n\rangle \quad \sum_{n} |a_n|^2 = 1$

$\langle \psi|\psi\rangle = \sum_{n,m} c_{nm} |\psi_n\rangle \langle \psi_m| = 1$

Volume operator in \mathbb{R}^3: $\mathbf{V}_\mathbf{r} = |\mathbf{r}|^2$ number of 4th barycentric nodes
spin-network (Penrose 62) (3-valent)

graph Γ whose edges Γ_{ij} yield all good

spinnet embedding $\tilde{\Gamma}$ into \mathbb{P}^3
spin-network (Penrose '62) (3-valent)

graph \(\Gamma \) whose edges \(1 \rightarrow 2 \)

spinnet embedding

\[\text{Inv(\text{Penrose})} \rightarrow 0 \]
spin-network (Penrose '67) (3-valent)

graph Γ whose edges $i\rightarrow j$ Y_k all good

Spinnet embedding $\tilde{\Gamma}$ \Rightarrow

$\text{Inv}(\text{graph}) \Rightarrow \text{graph} \Rightarrow 0$
spin-network (Penrose 62) (3-valent)

graph \(\Gamma \) whose edges \(\gamma \) and \(\gamma' \) all good

spinnet embedding \(\hat{\Gamma} \)

\[\text{Inv}(\mathfrak{so}(3,\mathbb{C}) \otimes \mathfrak{so}(2m)) \rightarrow \text{defines} \]
\[\mathcal{H} = \text{ov.lational basis} \]

\[| \Psi \rangle = \sum_{\alpha \beta} c_{\alpha \beta} | \alpha \rangle | \beta \rangle \]

\[\langle \Psi | \Psi \rangle = \sum_{\alpha \beta} \langle \alpha | \beta \rangle \langle \beta | \alpha \rangle = 1 \]

\[\langle \Psi | \Psi \rangle = \sum_{\alpha \beta} c_{\alpha \beta}^* c_{\beta \alpha} \]

A general spin network graph \(\Gamma \)

\[\chi \in \mathcal{H} \]
\[|\Psi\rangle^2 = \sum_{m,n} |m\rangle \langle n| \sum_{m,n} |m\rangle \langle n| = 1 \]

\[\langle \Psi | \Psi \rangle = \sum_{m,n} |m\rangle \langle n| \sum_{m,n} |m\rangle \langle n| = 1 \]

A general spinnet graph

\[X \in |\Psi\rangle \]
A general spinnet graph Γ

$X \Rightarrow Y$

$X \Rightarrow Y$

History

Local dynamics

Bivalent nodes

 contraction

expansion

Not proved

Exchanges
A general spinnet graph \(\Gamma \).

\[
\begin{align*}
\langle \partial \partial \partial \partial \rangle &= \mathbb{S} \mathbb{S} \mathbb{S} \\
\text{not O-dim}
\end{align*}
\]

\[
X = X \quad 1 \circ 1 \rightarrow 0 \\
1 \circ 1 \rightarrow 1 \circ 1
\]

History

Local dynamics

Bivalent graphs

contraction

expansion

Not Fusion

Exchanges
morally
moral \texttt{embedd} \\ \texttt{topological embedding} \\ \texttt{diffeomorphism embedding}
morally $orall$

topological embedding

by proposition

diffeomorphic embedding

quantum GR in 3+1 in \mathbb{S}

LOST worm
spin-network (Penrose 62) (3-valent)
graph Γ whose edges $1 \rightarrow i$ $\forall y_k$ all good
spinnet embedding $\tilde{\Gamma} \rightarrow \mathbb{D}^3$ defines vector space
$\mathrm{Inv}(\mathbb{D}^3)$
morally

topological embedding

by precise

diffeomorphic
embedding

quantum GR in 3+1 in \(\Xi \)

LOST (worm)
History (3-vertex) \(\mathcal{F} \)

\[\mathcal{F}_0 \rightarrow \mathcal{F}_1 \rightarrow \ldots \rightarrow \mathcal{F}_{n-1} \]

Each move is local

Dynamics

\[a_{\text{interaction}}, a_{\text{source}}, a_{\text{scatter}} \]

History has an amplitude

\[a(\mathcal{F}) = \prod_{\text{move}} a(\text{move}) \]

Evolution amplitude

\[\mathcal{F} \rightarrow \mathcal{F}' = E(\mathcal{F}, \mathcal{F}') \]

\[= \sum_{\text{final}} a(\mathcal{F}) \]

\[E(\mathcal{F}, \mathcal{F}') = \sum_{\text{final}} \frac{a(\mathcal{F})}{a(\mathcal{F}')} \]
spin-network (Penrose 62) (3 valent)

graph Γ whose edges $1 \rightarrow \gamma$ \(\gamma \in \text{all good} \)

Spin-net embedding $\hat{\Gamma} \rightarrow$ defines vector space

\[\text{Inv}(\mathfrak{g}) \rightarrow 0 \]
history (3-valent) \neq
\hat{r}_0 \rightarrow \hat{r}_1 \rightarrow \ldots \hat{r}_{n-1}

each move is local

Dynamics \quad a(\text{move}) = a_{\text{move}}, a_{\text{move}}, a_{\text{move}}

\text{history has an amplitude} \quad a(E) = \prod_{\text{moves}} a(\text{move})

\text{Evolution amplitude} \quad \hat{r} \rightarrow \hat{r'} = E(\hat{r}, \hat{r'}) = \sum_{\phi} a(E)