Abstract: This is an introduction to background independent quantum theories of gravity, with a focus on loop quantum gravity and related approaches.

Basic texts:

- Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005
- Quantum gravity with a positive cosmological constant, Lee Smolin, hep-th/0209079
- Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048
- Gauge fields, knots and gravity, JC Baez, JP Muniain

Prerequisites:

- undergraduate quantum mechanics
- basics of classical gauge field theories
- basic general relativity
- hamiltonian and lagrangian mechanics
- basics of lie algebras
- Chern-Simons Theory
- Back to BF
- General Relativity 4/5/6 in 0261079
• Chern-Simons Theory
• Back to BF
• General Relativity 4/5/6 in 0201077
3-manifold compact $M \quad A \in G \rightarrow SU(2)$
3-manifold compact M $A_a \in G \rightarrow SU(2)$

$F_\mu^\nu = \partial \! \! \! / A_\mu + [A_\mu, A_\nu]_{\text{gf}}$
3-manifold compact M

$A_\alpha \in G \to SU(2)$

$F_{\mu \nu} \propto \partial A_\mu + A_\mu A_\nu$
3-manifold compact M

general Lie Algebra γ^a

$\left[\gamma^a, \gamma^b \right] = i f^{abc} \gamma^c$

$A_a \in \mathfrak{g} \rightarrow \mathfrak{su}(2)$

$F_{ab} = dA^a + A^a \wedge A^b$
3-manifold compact M

general Lie Algebra \mathfrak{g}

$[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$

$A_a \in G \rightarrow SU(2)$

$F_{\mu\nu} = dA^\mu + A^\mu A^\nu$

$A_\mu = A^I_\mu \gamma^I$
3-manifold compact \mathcal{M}

general Lie Algebra \mathfrak{g}

$[\gamma_i, \gamma_j] = \delta_{ij} \gamma_k$

$A_a \in G \rightarrow SU(2)$

$F_{ab} = \partial A^a + A^a A^b$

$s =$

$A_a = A_i^I \gamma_I$
3-manifold compact M

Lie Algebra \mathfrak{g}

$[\gamma^i, \gamma^j] = \delta^{ij} \gamma^k$

$A_a \in G \Rightarrow su(2)$

$L_{a\mu} = \partial A^\mu + A^\nu \gamma^\mu A_{\nu}$

$A_a = \Lambda^I a \gamma_I$

$S = \int \frac{3}{2} \epsilon_{abc} \omega_a \delta_{bc}$
s-manifold compact M $A_\alpha \in \mathfrak{g} \Rightarrow \mathfrak{su}(2)$

$[I^I, I^J] = f_{IJ}^K I^K$ $A_{a \alpha} = A^I_{\alpha} I^I$ $A_\alpha = A^I_{\alpha} I^I$

$s = \sum_{s=0} Y_{s\alpha} = \sum_{s=0} Y_{s\alpha} = A^I_{\alpha} \left(A^I_{\alpha} + \frac{2}{3} s \sigma \right) A_{n\alpha} \lambda_\beta n_\beta$
3-manifold compact \mathcal{M}

general Lie Algebra γ

\[
[\gamma^I, \gamma^J] = \frac{2i}{g} \epsilon^{IJK} \gamma^K
\]

$S = \sum s_{\text{con}} = \sum Y_{CS}$

$Y_{CS} = A^I_{\alpha\beta} (A^J_{\gamma\delta} + \frac{2}{3} g^{IJK} \epsilon_{\alpha\beta\gamma\delta}) A^\alpha A^\beta A^\gamma A^\delta$
3-manifold compact M

\[A_a \in G \rightarrow SU(2) \]

\[\gamma^I \]

\[[\gamma^I, \gamma^J] = \frac{1}{2} \epsilon^{IJK} \gamma^K \]

\[A^a = A^I_a \gamma^I \]

\[S = \int_{\text{3-conn}} = \int_Y \alpha \]

\[\chi_v = A^I_a \left(A^I_a + \frac{2}{3} \epsilon^{IJK} A^J_a A^K_a \right) \]

\[\frac{\delta S}{\delta A^I_a} \]
Γ-manifold compact \mathcal{M}

\[
\Gamma \Gamma = \gamma \ga
s-manifold compact M \(A_a \in G \to SU(2) \)

\[F_{\mu\nu} = \partial A^\mu + A^\nu A^\mu \]

\[\left[\gamma^I, \gamma^J \right] = \delta^{IJ} \gamma^k \]

\[A^I = A^I_\alpha \gamma^\alpha \]

\[\text{Chern-Simons} \]

\[S = \int_{\Sigma} \left(A^\mu \wedge \left(\partial_\mu A^\nu + \frac{2}{3} F^{\nu\rho\sigma} A_\rho A_\sigma \right) + \frac{1}{2} \ast F^{\mu\nu} \right) \]

\[\frac{\delta S}{\delta A^\mu_\alpha} = \partial_\mu F_{\alpha c} = 0 \quad \therefore F_{\mu\nu} = 0 \]
$\text{3-manifold compact } M$

$A_a \in G \rightarrow SU(2)$

$F_{\mu\nu} = dA^\mu + A^\mu A^\nu_{\text{Lie}}$

$[\gamma^I, \gamma^J] = \delta^{IJ} \gamma^K$

$A_\mu = \Lambda^a \gamma^a \gamma^\mu$

$S = \int_{t=0}^\infty dt \, \text{exp} \left(\int Y_{\text{CS}} \right) \quad Y_{\text{CS}} = \Lambda^a \Lambda^a + \frac{2}{3} \int \frac{1}{2} \epsilon^{\mu\nu\rho} A_\mu A_\nu F_{\rho\sigma} F_{\mu\nu} = C$

$F_{\mu\nu} - \frac{2}{3} \Lambda^a F_{a\mu} \Lambda^a \gamma^\mu = 0$

=$ \Lambda^a F^a + \frac{1}{3} \epsilon^{\mu\nu\rho} A_\mu A_\nu A_\rho$

$\frac{\delta S}{\delta A^a_\mu} = \epsilon^{\mu\nu\rho} F_{\nu\rho} = C$
3-manifold compact M

general Lie algebra γ_i

$[\gamma_i, \gamma_j] = \delta_{ij} \gamma_k$

$A_4 = A_9 \gamma_1$

$S = \sum_{i=1}^{3} Y_{C_5} = A_5 A_5 + \frac{2}{3} s_{ij} = A_5 A_5 A_5$

$F_{\mu \nu} = 0$

$F_{\mu \nu} = \frac{1}{3} F_{\mu \nu} A_5 A_5 A_5$

$A_5 \in G \rightarrow SU(2)$

$F_{\mu \nu} = dA_5 + \frac{2}{3} A_5 A_5 A_5$
S-manifold compact M

$A_a \in G \to SU(2)$

$[T^i, T^j] = f^{ijk} T^k$

$A_\mu^I = A^I_{\mu I}$

$S = S Y_{cs} = A^I_{\mu I}(A^I_{\mu I} + \frac{2}{3} g f^{IJK} A^J_{\mu K} A^K_{\mu I})$

$\sum A^c_{\mu c} = \sum F_{\mu c}^I = 0$

$A^I_{\mu I} F^I_{\mu I} = 3$
$\text{3-manifold compact } M$

\[A_\alpha \in G \rightarrow \mathfrak{g}(2) \]

\[F_{\mu \nu} = d A^\mu + A^\rho A^\mu A_{\rho \nu} \]

\[[\gamma^I, \gamma^J] = \frac{1}{2} i \epsilon^{IJK} \gamma^K \]

\[A_4 = A_4 \gamma^I \]

\[S = \sum_\text{conf} = \sum \gamma_{Cs} \quad \gamma_{Cs} = A^I \mathcal{A}_{I} + \frac{2}{3} \mathcal{F}_{IJ} \mathcal{F}^{IJ} = A_1 A_2 A_3 A_4 \]

\[\frac{\delta S}{\delta A^I_4} = \sum_\text{conf} F^I_{\mu \nu} = 0 \]

\[\mathcal{F}^{I} = \mathcal{A}^{I}_{12} \mathcal{A}_{13} \mathcal{A}_{14} \]
3-manifold compact \mathcal{M} with general Lie algebra \mathfrak{g}

$$[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$$

$$F_\mu^\nu = dA^\mu + A^\nu A^\mu$$

$$A^\mu = A^\nu_i \gamma_i$$

$$S = S_{\text{3-geom}} = S_{\text{YM}}$$

$$\text{YM} = A^\nu_i \frac{1}{3} F_{\mu\nu}^i 3 = 0$$

$$\frac{\delta S}{\delta A^\nu_i} = A^\nu_i F_{\mu\nu}^i$$

$$S_{\text{YM}} = \frac{1}{2} \nabla^2 F_{\mu\nu}^i$$

$$\text{YM} = \frac{1}{2} \nabla^2 A^\nu_i$$
\[z_{i_1 i_2 \ldots i_n} F_{a_1 a_2} \]
3-manifold compact \mathcal{M}

general Lie $\text{Alg}_{\mathfrak{su}(2)}$

$[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$

$F_{\mu \nu} = \partial \mathfrak{A} + \mathfrak{A} \wedge \mathfrak{A}$

$A_0 = \mathfrak{A} \wedge \mathfrak{I}$

$S = \int \text{vol} = \int \text{Y}_{\text{cs}}$

$\mathfrak{Y}_{\text{cs}} = \mathfrak{A} \wedge \mathfrak{A} + \frac{2}{3} \mathfrak{F} \wedge \mathfrak{F} = \mathfrak{A} \wedge \mathfrak{A} \wedge \mathfrak{A}$

$S_\mathfrak{A} = 0$

small jet $\mathfrak{Y}_{\mathfrak{A}_0} = \mathfrak{A}_0 \wedge \mathfrak{I}$

$\mathfrak{F}_{\mu \nu} = 2 \mathfrak{F} \wedge \mathfrak{F}$

$S \mathfrak{Y}_{\mathfrak{cs}} = d(2\text{-form})$, check $S \mathfrak{Y}_{\mathfrak{cs}} = 0$
Small gaugino

\[\delta N_i^c = \alpha c X^c \]

\[\delta E_i^c = \lambda^c \lambda_i^c \epsilon_i^c \]

\[\delta Y_{iij} = d(2 \text{-form}) \]

CHECK

\[\delta \sum Y_{iij} = 0 \]

\[SU(2) \]

\[M = 5^2 \]
Small gauge terms $\delta A^a_i = D^i_a X$
$\delta F_{ij} = 3 \epsilon^{ijk} \lambda_m F_{sk}$

$\delta Y_{id} = d(2\text{-form})$ CHECK $\delta \delta Y_{id} = 0$

SU(2)
M = \sum^2
Small insertions: $\delta A_4^a = D_a X^i$
$\delta F_{ac} = \epsilon^{ijk} A_{ji} F_{ak}$
$\delta Y_{ab} = d(2\text{-form})$ CHECK $\delta \delta Y_{ab} = 0$

$SU(2) \cong S^3$ $M = S^2$
Small jactrons \(S A_i^c = D x^I \)

\(\delta F_{a i} = 2 j m \lambda_{\alpha} F_{i \alpha} \)

\(\delta \chi_{ab} = d(2\text{-form}) \text{ CHECK } \delta \delta \chi_{ab} = 0 \)

\[SU(2) \cong S^3 \quad M = S^3 \]
Small gauge terms

\[S_{\text{A}} = \mathcal{L} \mathcal{X} \]
\[S_{\text{F}} = \mathcal{L}_{\mathcal{X}} \mathcal{A} \]

\[\delta Y_{\text{A}} = d(2\text{-form}) \text{ CHECK } \delta S_{Y_{\text{A}}} = 0 \]

\[\text{su}(2) \cong S^3 \]
\[M = S^3 \]

LARGE GAUGE TRANS.
Small symmetries: $\delta A_i = D_i^X$
$\delta F_{ij} = \epsilon^{ijk} \lambda_m F_{mk}$
$\delta Y_{i5} = d(2\text{-form})$
Check: $\delta \delta Y_{i5} = 0$

$SU(2) \simeq \mathbb{S}^3$
$M = S^2$

Large gauge truncation $g(x)$
\[\text{Small symmetry:} \quad \delta A_a = 2 \alpha X^a \quad \delta F_{ab} = 2 \epsilon_{mnp} A_m \wedge F_{np} \]
\[\delta Y_{ab} = d(2\text{-form}) \quad \text{CHECK} \quad \delta S Y_{ab} = 0 \]

\[\text{Grav.} \quad SU(2) \times S^3 \quad M = S^2 \]

Large gauge trans. \(g(x) \): \(A_a \to g'(iA+A)g \)
\[\begin{align*}
 & \text{small junctions } S\mathcal{A}_k = Q \chi^T \\
 & \delta F_\perp = \epsilon^{\mu \nu} \chi A_\mu F_\perp \\
 & \delta Y_{k_s} = \mu(2-\text{form}) \text{ check } \delta S Y_{k_s} = 0
\end{align*} \]

\[\text{ SU}(2) \times S^3 \quad M = S^3 \]

Large gauge trans. \(g(x) \ni A_\mu \rightarrow \frac{g}{2} (\mu + A) g \]
\begin{align*}
\text{Small gauge term: } & S A^I = \{a \chi^I \} \\
\text{Check: } & \delta S Y_{\alpha_5} = 0 \\
\text{Lattice gauge term: } & \mathcal{g}(x) \colon A_a \to \mathcal{g}(1 + A)_a \mathcal{g}
\end{align*}
small spectra, $S\Delta^2 = L_i \chi^T$

$\delta Y_{ab} = \delta (2-\text{form})$

Check $\delta SY_{15} = 0$

$\text{SU}(2) \times S^5$

$M = S^3$

Large gauge transit $g(x) : A \rightarrow g'i(A)g$

$W \rightarrow W_{\text{fin}}$
Small junctions $SA^a = x d^a T$

$\delta F^a_{\mu} = e^{i \mu} \lambda_{\mu} F^a_{\mu}$

$\delta Y_{\mathbf{1}} = d(2 \text{- form})$ CHECK $\delta \delta Y_{\mathbf{1}} = 0$

$SU(2) \times S^3 \quad M = S^3$

LARGE GAUGE TRANS $g(u) : A_\mu \rightarrow g^{-1}(u + A_\mu) g$

w
\[S = \int \frac{1}{Z} e^{-S} \]

\[S_A = 0 \]

\[\frac{\delta S}{\delta A^a} = \epsilon^{abc} F_{bc} \]

\[S_Y = \lambda^2 A^a \]

\[\delta F^2 = \epsilon_{abc} A^a \]

\[\delta S_Y = \lambda^2 A^a \]

\[\delta S_Y = 0 \]

\[W = \text{Large gauge transformation} \]

\[A_a = \tilde{g} (a + A_a) g \]
small symmetric \[S^A = 2A^X \]

\[\delta Y_{\lambda} = d(2-form) \quad \text{CHECK} \quad \sum \delta Y_{\lambda} = 0 \]

\[\text{SU}(2) \times S^5 \quad M = S^3 \]

Large gauge transit \[g(x) : A_\mu \rightarrow g^{-1}(\mu + 1)g \]

\[S_{15} \rightarrow S_{15s} \]

\[W = \text{Wimper} \rightarrow S^3 \]
Small gauged \(S^3 \): \(S_{\mu} = 2\lambda X^\mu \)
\(F_{\mu\nu} = \varepsilon_{\mu\nu\rho\sigma} A^\rho F^{\sigma} \)
\(\delta Y_{\alpha} = d(2\text{-form}) \text{ CHECK } \int \delta Y_{\alpha} = 0 \)

\[SU(2) \times S^3 \quad M = S^3 \]

Large gauge trans. \(g(x) \) \(A_\mu \rightarrow g^{-1}(\mu + \lambda) g \)

\(S_{T_3} \rightarrow S_{T_3} + 8\pi^2 W \)

\[W = \text{wilpsychism?} \]
Small gauge theory, \(SA_n = \mathcal{X} \)

\[\delta Y_{15} = \mu(2-\text{form}) \quad \text{CHECK} \quad \delta \sum Y_{15} = 0 \]

\(SU(2) \otimes S^3 \quad M = S^3 \)

Large gauge transformation \(g(\nu) \); \(A_n \rightarrow \vec{g}(1+A), g \)

\[\vec{
abla} \rightarrow \vec{\nabla} + 8\pi^2 W \]

* ODD Parity \(x \rightarrow -x \)
Small gauge transformation, \(S \phi_i = D \phi^x \)

\[\delta Y_{\alpha} = \alpha (2 \text{- form}) \text{ CHECK: } \delta \sum Y_{\alpha} = 0 \]

\(SU(2) \times S^3 \quad M = S^3 \)

Large gauge transformation, \(\Omega(x) \):

\[A_{\alpha} \rightarrow \tilde{g}^{-1}(u + A) \tilde{g} \]

\[S R_{\alpha} \rightarrow S R_{\alpha} + 8 \pi^2 W \]

ODD Parity

\[x \rightarrow -x \]

\[A_{\alpha} \rightarrow -A_{\alpha} \]
Small symmetries $SA_4^L = \mathbb{Z}_2 \times \mathbb{Z}_2$

$\delta Y_{15} = d(2-\text{term})$ **CHECK** $\int \delta Y_{15} = 0$

$\text{grd: } SU(2) \times S^3 \quad M = S^3$

Large gauge trans. $g(x): A_\mu \rightarrow g^{-1}(\mu + A_\mu)g$

$\begin{aligned}
\sum_{\text{odd parity}} & \rightarrow - \sum_{\text{odd parity}} \\
A_\mu & \rightarrow -A_\mu \\
S_{\text{tr}} & \rightarrow -S_{\text{tr}}
\end{aligned}$
\[\sum \text{ something} \]
\[8 \gamma_{ss} = d(2 \text{-form}) \quad \text{CHECK} \quad \oint \gamma_{ss} = 0 \]

\[\text{SU}(2) \times S^3 \quad M = S^3 \]

Large gauge tran. \(\text{g.c.} \): \quad \Lambda_n \rightarrow \overline{\Lambda}'(\Lambda + A), \quad g \]

\[\gamma_{ss} \rightarrow \gamma_{ss} + 8 \pi^2 \text{w} \]

DD parity \quad x \rightarrow -x \quad \Lambda_n \rightarrow -\Lambda_n \quad S_f \rightarrow -S_f \]

\[W = \text{Wilson line} \]

\[S^3 \]
\[\sum_{a_1 \cdots a_n} b_{a_1 \cdots a_n} F_{a_1, \cdots, a_n} \]

\[T_L \quad \cdots \quad T_R \]
\[<T[\theta]> = \sum_{\text{dim}(A)} e^{\frac{i KS^{CS}}{2 \pi}} \]
\[T_L \quad \quad \quad T_R \]

\[\langle T[A] \rangle = \sum_{\text{all } A} e^{\frac{ikS_c}{2\pi}} T[0,A] \]
\[T_L \quad \quad \quad \quad \quad T_R \]

\[\langle T[A] \rangle = \sum_{a_1 \ldots a_n} F_{a_1 \ldots a_n} \quad e^{\frac{ik \cdot S \cdot c_5}{2 \pi}} \quad T[O_{1,1}] \quad \text{with} \]

\[\text{Infer related equations or expressions.} \]
\[T_L \quad T_R \]

\[\langle T[0] \rangle = \sum_{a_1, \ldots, a_n} T_{a_1, \ldots, a_n} F_{a_1, \ldots, a_n} \]

\[e^{\frac{\pm 1}{2} \pi} \]

\[T[0, H] \leftrightarrow (\psi)_{W[y]} \]
\[T_L \bigcirc \bigcirc \quad T_R \bigcirc \bigcirc \]

\[\langle \tau \rangle = \sum_{\text{dim}(A)} e^{\frac{i \kappa S c_5}{2 \pi}} T[\vartheta, \bar{h}] = (\text{K} \times \text{K}) \text{W}[Y] \]
\[\text{manifold compact } M \quad A_0 \in C^* SU(2) \]
\[F_{\alpha}^2 = \partial A_{\alpha} + \lambda A_{\alpha} \]

\[S = \sum \text{ terms} = \sum Y_{cs} \quad Y_{cs} = A_{\alpha} A_{\alpha} + \frac{2}{3} F_{\alpha}^2 \quad \text{max} \quad \text{terms} \]

\[\frac{dS}{dA_{\alpha}} = 2 F_{\alpha} \quad F_{\alpha} = 0 \]

\[\text{small argument } S A_{\alpha} = \sum A_{\alpha} \quad g F_{\alpha} = \sum \lambda_{\alpha} F_{\alpha} \]

\[S Y_{cs} = \frac{1}{2} \text{ (terms) } \quad \text{check } \quad \sum S Y_{cs} = 0 \]

\[\text{large gauge terms } g(v) = A_0 \quad g(v) = g(1 + A) \quad g \]

\[S Y_{cs} \rightarrow S Y_{cs} + 8 \pi^2 W \]

\[W \rightarrow \text{ wavy line} \]
$T_L \bigcirc \bigcirc T_R \bigcirc \bigcirc$

\[
\langle T[\phi] \rangle = \sum_{\Delta(A)} e^{i S_{\phi}} T[O_{\phi}]^{\text{inv}} \omega[Y]
\]
\[M = \sum x^2 \]
\[M = \sum_{i}^{(E)} R \quad \exists \text{compact} \]

[Diagram of a compact set]
\[M = \mathbb{S}^2 \times \mathbb{R} \]

\[S = \text{Sdt} \, \text{Sin} \]

\[S = \text{Sdt} \, \text{Sin} \]

\[\exists \text{cont} \]

\[\exists \]
\[\mathcal{M} = \mathcal{L}^2 \times \mathbb{R} \; \; \mathcal{S} \; \text{compact} \]

\[\mathcal{S} = \text{Set} \; \mathcal{S} \]

\[n \in \mathcal{S} \]
\(\text{M} = \sum \alpha^2 \times R \)

\(S = \sum \text{area} \times \text{height} \)

\(\alpha = 0.112 \)

\(\theta \)
\[M = \sum_i^2 S \times \mathcal{R} \exists \text{compact} \]

\[S = \sum_{i=1}^{3} 4 \]
$M = \sum^{2n} x \in \mathbb{R} \setminus \mathbb{Z}$

$s = \sum_{i=1}^{n} \prod_{j=1}^{m} [A_i \cdot A_j]$
\[M = \sum_{\mathcal{E}} \mathcal{V} \times R \quad \exists \text{ compact} \]

\[S = \sum \mathcal{S} \mathcal{S} \psi \mathcal{V} \mathcal{V} [A, \phi, A] \]
\[M = \sum_{i \in \mathbb{R}} \mathbb{E} \text{ compact} \]

\[S = \text{set} \sum_{i \in \mathbb{R}} \mathbb{E} \left[\mathbb{A}_1 \mathbb{A}_2 + \mathbb{A}_3 \right] \]
\[M = \sum_{i} \epsilon_i e_i \otimes R \quad \exists \text{ compact} \]

\[S = \sum_{\mu} S_{\mu} \epsilon_{\mu} \left[A_{\mu}^1 \otimes A_{\mu}^2 + A_{\mu}^2 \otimes \epsilon_{\mu} \right] \]

\[a = 0, 1, 2 \]

\[q_{0, 1, 2} \]
\[M = \sum_{i} \varepsilon_{i} R \]

\[S = \int d\tau \sum_{i} \varepsilon_{i} \left[A_{i} \phi A_{i}^{\dagger} + A_{i}^{\dagger} F_{ij} A_{j} \right] \]

\[a = 0, 1, 2 \]

\[\tau = 0, 1, 2 \]
\[M = \sum_{i=1}^{\infty} x_i R \]

\[S = \sum_{x} S_{ax} \exp \left[\frac{\pi^2}{A_0^2} A_0^2 + A_0^2 \right]
+ \exp \left[\frac{\pi^2}{A_0} A_0 \right] \]

\[a = 0, 1, 2 \]

\[n = 0, 1, 2 \]
\[M = \sum_x R \ \exists \ \text{compact} \]

\[S = \int dt S \bar{A} \cdot \bar{A}^* \left[A_0 \cdot A_0 + A_0 \cdot F \cdot \frac{1}{2} + \frac{1}{2} A_0 \cdot A_0 \cdot A_0 \cdot A_0 \right] \]

Moment:

\[\Pi_\frac{T}{\tau} = \frac{\delta S}{\delta A_0} = \oint \bar{A} \cdot \bar{A} \]

\[a = 0, 1/2, 0, \frac{1}{2} \]
\[\mathcal{M} = \sum_{\ell} \chi_{\ell} \times \mathbb{R} \quad \exists \text{ compact} \]

\[S = \int dx \int dy \sum_{\ell} \left[A_0^2 + \frac{A_0^2}{R_0^2} \right] \]

\[\pi_1 = \frac{\delta S}{\delta A_0} = \sum_{\ell} A_0^2 \]

\[\{ A_0(x,y), A_0(x',y') \} = \frac{1}{\pi} \int S^2(x,y) \]

\[a = 0, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots \]
\[M = \sum_i x_i R \quad \exists \text{compact} \]

\[S = S dt \sum y_i \varepsilon_i \varepsilon_i \left[A_{x_i}^2 A_{y_i}^2 + A_{x_i}^2 F_{x_i}^2 + \frac{\varepsilon_i}{\varepsilon_i} A_0 + \frac{\varepsilon_i}{\varepsilon_i} \chi \right] \]

\[
\Pi_{i} = \frac{\delta S}{\delta A_{x_i}^2} = \varepsilon_i A_{x_i}^2 \\
\Pi_0 = 0 \Rightarrow C_{i} = F_{12} = 0
\]
\[\mathcal{M} = \sum_{i}^{(2)} x R \leq \text{comp} + \]

\[S = \text{Sum} S_{\text{in}} \varepsilon \delta \left[A_{i}^{2} A_{i}^{2} + A_{0}^{2} F_{\mu}^{\mu} + \varepsilon^{2} A_{0} A_{0} A_{\mu} A_{\mu} \right] \]

\[\text{Moment} \]

\[\Pi_{i}^{2} = \frac{S_{\text{in}}}{S_{\text{out}}} - S^{2} A_{i}^{2} \]

\[\Pi^{0} = 0 \Rightarrow C^{2} = F_{\mu}^{\mu} = 0 \]
\[M = \sum_{i=1}^{n} x_i \]

\[S = S_{\text{det}} S_{\text{vol}} \epsilon \alpha \beta \gamma \left[A_{\alpha}^\beta A_{\beta}^\gamma + A_{\alpha}^\gamma A_{\gamma}^\beta \right] + x_{\beta}^\alpha A_{\alpha}^\beta \delta_{\beta}^\gamma A_{\gamma}^\beta \]

Moment

\[\Pi_i = \sum_{j=1}^{n} x_{\beta}^j A_{\beta}^i \]

\[\Pi^0 = 0 \Rightarrow C^i = F_{12} = 0 \]

\[H = \int \chi \xi \]
\[M = \sum_{i=1}^{n} x_i \] 3 \text{ compact}

\[S = S \text{ect} S \text{ect} \sum_{\alpha} [A_{\alpha} \cdot A_{\alpha} + A_{\alpha} \cdot \bar{A}_{\alpha} + A_{\alpha} \cdot E_{\alpha}] + [\Delta A_{\alpha} A_{\alpha} A_{\alpha} A_{\alpha}] \]

\[\Pi^i = \frac{\delta S}{\delta A_i} - \delta S A_i \]

\[\Pi^0 = 0 \Rightarrow C^i \]

\[H = \sum_{\alpha} \chi^i C_i \]
\[M = \left(\mathbb{E} \times R \right)^3 \text{ compact} \]

\[S = \sum \int \sum x \int \left[A^1_x A^2_y + A^3_x A^4_y \right] \]

\[\text{moment} \]

\[\Pi^1_x = \frac{\dd \Sigma}{\dd A^1_x} = 3 \lambda \gamma A^1_x \]

\[\Pi^0 = 0 \Rightarrow C^1 = F_{12} = 0 \]

\[H = \sum \lambda \gamma \epsilon \]
\[M = \sum_{i=1}^{N} \chi_i R \]

\[S = \sum_i S_i \rho \chi_i + \sum_i A_i^\pm F_i^\pm \]

Moment:

\[P_i^\pm = \frac{\delta S}{\delta A_i^\pm} = \phi^{\mp} A_i^\pm \]

\[\Pi^0 = 0 \Rightarrow C^0 = F_i^0 \]

\[H = \sum \chi_i \rho \]

\[q = 0, \pm \frac{1}{2} \]

\[\phi \]

\[(x, y) \]
\[M = \sum_{i=1}^{n} x_R \Rightarrow \text{compact} \]

\[S = \int dA S \int d^{\infty - 4} \left[A_0^2 \hat{A}_0^2 + A_e^2 \hat{A}_e^2 + \ldots \right] \]

\[S A_l_{\text{on}} = 0 \]

\[\Pi^1 = \frac{\delta S}{\delta A_l^1} - \delta \hat{A}_l^1 \]

\[\Pi^0 = 0 \Rightarrow C^2 = F_{12} = 0 \]

\[H = \int d^4x \hat{C} \]
\[M = \sum_{i}^{(2)} x R \]

\[S = \sum_{i \in I} \sum_{k} \varepsilon_{ijk} \left[A_{i}^{a} A_{j}^{b} A_{k}^{c} + A_{j}^{i} F_{i}^{b} \right] + \{ A_{i}^{a}, \lambda_{j}^{b} \} = \sum_{i}^{(2)} S(x, y) \]

\[\Pi^{i} = \frac{\delta S}{\delta A_{i}^{a}} = \varepsilon_{ijk} A_{j}^{b} \]

\[\Pi^{0} = 0 \Rightarrow C^{0} = F_{0}^{0} = 0 \]

\[H = \sum_{i \in I} x \xi_{i} \]
\[4D \quad M = \Sigma^3 \times \mathbb{R} \quad \Leftrightarrow \text{compact} \]
$4D \ M = S^3 \times \mathbb{R} \ \tilde{S}^3$ compact \ $\theta \ S^3 = 0$
4D $\mathcal{M} = \mathbb{S}^3 \times \mathbb{R}$ \text{ compact $\partial \mathcal{M} = 0$}

A_0, gauge field in $G = SU(2)$

F
$4D \quad M = \Sigma^3 \times R \quad \Sigma^3 \text{ compact } \partial \Sigma = 0$

$A_\mu \quad \text{gauge field } \mu \quad (G = SU(2))$

$F_{\mu \nu}$
4D $\mathcal{M} = \mathbb{R}^3 \times \mathbb{R}$ compact $\partial \mathcal{M} = 0$

A_a gauge field 4 ($G = SU(2)$) $a = 0, 1, 2, 3$

$F_{\mu\nu}$
4D \[M = \Sigma^3 \times R \]

\[\Sigma^2 \text{ compact } \partial \Sigma = 0 \]

\[a = \frac{0.128}{4} \]

\[B_{95} = 2 \text{ km } g/\text{s} \]

\[A_r \text{ gaseous } \]

\[F_{96} \]
4D \quad \mathcal{M} = \mathbb{S}^3 \times \mathbb{R} \quad \mathbb{S}^3 \text{ compact } \delta \varepsilon = 0 \quad a = 0.125 \\
B_{\Phi} \quad 2 \text{ from } g/30 \quad \text{gauge field } \Phi \quad G = \text{SU}(2) \\
\text{valuing } G \quad F_{\Phi} \\
S = S
4D $M = \Sigma^3 \times R$ Φ^2 compact $\partial \Sigma = 0$

$\alpha = 0, 1, 2, \ldots$

$B_{\mu \nu} - 2 \varepsilon_{\mu \nu \rho \sigma} \frac{\partial A_\rho}{\partial x^\sigma} = F_{\mu \nu}$

$S = S + \text{terms} = S$
$M = \Sigma^3 \times \mathbb{R}$

3-dimensional compact Σ^3 with $\varepsilon = 0$

A_2 gauge field in $G = SU(2)$

$B_{45} \sim 2$ form $g / 8 \pi$

$S = S^4 + \text{form} = S$
4D $M = \Sigma^3 \times \mathbb{R}$ \hspace{1cm} \Sigma^3\text{ compact} \hspace{1cm} \partial \Sigma = 0 \hspace{1cm} a = 0.625$

$B_{\alpha\beta} = \text{some expression} \hspace{1cm} A_\alpha \hspace{1cm} g_\text{gravitational} \hspace{1cm} C = \text{something} \hspace{1cm} \eta = \text{something}$

$S = S + \text{something} = S$
\[M = \sum_{x} x R \] for compact

\[S = \oint \sum_{x} e^{x} [A_{i}^{x} A_{j}^{x} + A_{i}^{x} F_{i}^{x}] + \oint A_{i}^{x} A_{i}^{x} A_{i}^{x} \] and \[\mathcal{A}_{x, y} = 0 \]

momentum

\[\Pi_{i}^{x} = \frac{\delta S}{\delta A_{i}^{x}} - \delta_{x} A_{i}^{x} \]

\[\Pi_{i}^{x} = 0 \Rightarrow C_{x}^{x} = F_{i}^{x} = 0 \]

\[H = \int \sum x^{2} c^{x} \]
4D $M = \mathbb{S}^3 \times \mathbb{R}$, \mathbb{S}^3 compact, $a = 0, \frac{1}{2}$

$B_{\alpha \beta}^{\perp}$ form 2-form, $B_{\alpha \beta} = \nabla_{\alpha \beta} A_{\gamma}$, gauge field in $G = SU(2)$

$F_{\lambda \mu}$

$\delta B^{\perp}_{\alpha \beta} = -\frac{i}{2} \epsilon^{\perp}_{\alpha \beta \gamma \delta} \lambda_{\gamma} B_{\delta \tau}$

$S = S_{\text{form}} = S$
$4D \quad M = \mathbb{S}^3 \times R$ \quad \mathbb{S}^3 compact $\Rightarrow \epsilon = 0$ $a = 0.425$

$B_{45}^1 \quad \text{mod.} \quad \text{gauge field} \quad G = \text{Surf}$

$S = S^{4\text{th.}} = S(B_{4A}^I F^I)$
\[M = \Sigma^3 \times \mathbb{R} \quad \text{compact} \quad \mathcal{E} = 0 \quad \mathcal{A} = 0.1234 \]

\[B_{45} \quad \text{2.6mm, q/20} \quad \text{vol/vol in} \quad \mathcal{G} = \text{SU(2)} \]

\[A_2 \quad \text{gauge field in} \quad \mathcal{G} = \text{SU(2)} \]

\[F_{45} \quad \delta B^5 = -2 \pi \lambda \delta \theta B_{45} \]

\[S = S_{\text{4-form}} = S(B_4^I F^I) - F_4^I F^2 \]
\[\mathbf{M} = \mathbf{\Sigma}^3 \times \mathbf{R} \]

\[\mathbf{\Sigma}^3 \text{ compact \& \& } \mathbf{\delta} \mathbf{\Sigma} = 0 \]

\[\mathbf{a} = 0.625 \]

\[\mathbf{B}_{+5} - \frac{1}{6} \mathbf{m} \frac{1}{2} \mathbf{e} \]

\[\text{vol}_{\mathbf{mg}} \quad \mathbf{A}_{\mathbf{e}} \]

\[\mathbf{F}_{+5} \]

\[\delta \mathbf{B}_{+5} = - \mathbf{i} \frac{1}{2} \mathbf{A} \mathbf{B} \]

\[\mathbf{S} = \mathbf{S} + \mathbf{h}_{+5} = \mathbf{S}[\mathbf{B}_{+5} \mathbf{F}_{+5} - 1 \mathbf{B}_{+5} \mathbf{B}_{+5} - \mathbf{F}_{+5} \mathbf{F}_{+5}] \]
$4D \quad M = \mathbb{S}^3 \times \mathbb{R} \quad \mathbb{S}^3$ compact $\Theta \varepsilon = 0 \quad \alpha = 0, 12\bar{5}$

$B_{a\bar{b}} \equiv \text{norm } q / c o \quad \text{vector } \mu \in G \quad G = \text{SU(2)}$

$A_{\mu} \quad \text{gauge field } \mu \quad G = \text{SU(2)}$

$F_{\mu\nu} \quad \delta B_{\mu} = -i T^{a c} \lambda_{c} B_{\mu}^{a}$

$S = S^{\text{formal}} = S \left[B_{a}^{\mu} F_{\mu}^{\nu} - \frac{1}{2} B_{a}^{\mu} B_{\bar{a}}^{\bar{\mu}} - \frac{1}{2} F_{\mu}^{\nu} F_{\mu}^{\nu} \right]$
\[4D \quad M = \Sigma^3 \times \mathbb{R} \quad \Sigma^3 \text{ compact and } \partial \Sigma = 0 \quad a = 0.625 \]

\[B^{i} - 2 \text{ fermionic fields } A_{\mu} \quad A_{\mu} \text{ gauge field in } G = SU(2) \quad \delta B^{i}_{\mu} = -i \gamma^{\nu} \kappa \lambda_{T} B^{\nu}_{\mu} \]

\[S = S^{\text{YM}} = S \left(B^{i}_{\mu} F^{i}_{\mu} - \frac{1}{2} B^{i}_{\mu} B^{i}_{\mu} - \kappa F^{+} F^{-} \right) \]
\[B_{\alpha \beta} = \text{form} \text{ of } \mathbf{E} \text{ in } G \]

Field equations:

\[S = S^{\text{total}} = S \left[B_{\alpha}^\mu F_{\alpha}^\mu - \frac{1}{2} B_{\alpha}^\imath B_{\alpha}^\imath - \frac{1}{4} \mathbf{F}^2 \right] \]
\[S = S^{\text{topology}} = S\left[B_\alpha^\tau F^{\tau} - \frac{1}{2} B_\alpha^\tau B_\alpha^\tau - \Psi F_{\alpha} F_{\alpha} F^{\alpha} F^{\alpha}\right] \]

Equations:
\[\frac{\delta S}{\delta B_{\alpha}^\tau} \]
\[F - \Lambda B = 0 \]
\[S = \sum_{\text{fields}} S [B_{A B}^\perp F_{A B} - \frac{1}{2} A^\perp B_{A B}^\perp - \mathbf{F} \cdot \mathbf{F}^\perp] \]

Field equations:

\[\frac{\delta S}{\delta A} = 0 \]

\[S_{B A}^\perp - 2 \sum_{\text{vol of } A} F_{A B} \]

Base field in \(G = SU(2) \)
\[S = \sum_{\text{terms}} = \sum \left[(B^+ \neq f(r,m) \text{ or } \text{value in } G \cdot F_{\mu} \cdot \delta B^+ = -\frac{1}{2} \eta_{\lambda \gamma} B^+ \cdot B^+ \cdot \gamma \right] \]

Field equation:

\[F - \lambda B = 0 \quad \frac{\delta S}{\delta A} = \]
\[S = S_{\text{form}} = S \left(B_A^\tau - \lambda B_A B^\tau - \frac{1}{2} F^\tau F^\tau \right) \]

Field equation:

\[F - \lambda B = 0 \quad \delta S \delta A = \]
\[B_{\text{vac}}^{1/2} \text{ eV/m} \]

\[S = S + \text{terms} = S \left(B^a_{\mu} + \frac{1}{2} A^a_{\mu} \right) - \frac{1}{2} F_{\mu \nu} F^{\mu \nu} \]

Field equations:

\[\frac{\delta S}{\delta B_{\mu}^{\mu}} = F - \Lambda B = 0 \]

\[\frac{\delta S}{\delta A_{\mu}} = \partial B + \Lambda B = 0 \]

\[\delta B_{a}^{\mu} = \frac{1}{2} \eta_{a b} F_{b}^{\mu} \]

\[\delta B_{a}^{\mu} = \frac{1}{2} \eta_{a b} F_{b}^{\mu} \]

\[\delta B_{a}^{\mu} = \frac{1}{2} \eta_{a b} F_{b}^{\mu} \]
\[S = S + \text{terms} = S \left[B^1_{\alpha} - \frac{1}{2} (A^\beta B^\beta_{\alpha}) - \varepsilon_{\alpha \beta \gamma} A^\beta A^\gamma \right] \]

Field equations:
\[
\frac{\delta S}{\delta B^1_{\alpha}} = F - \Lambda B = 0 \\
\frac{\delta S}{\delta A} = \frac{d}{dt} B + \Lambda a B = 0 \\
\frac{\delta}{\delta \Lambda B} = 0
\]
\[S = S_{\text{fourth}} = S \left(B_n^\perp, \frac{1}{2} \nabla B_n^\perp B_n^\perp - \epsilon F \right) \]

Field equations:
\[\frac{\delta S}{\delta B_n^\perp} = 0 \]
\[\frac{\delta S}{\delta A} = dB + \Lambda B = 0 \]
\[\frac{\partial \Lambda B}{\partial A} = 0 \]
\[B_{ab} = -2 \text{ form } g_{\mu \nu} \]
\[S_{\mathcal{B}_{ab}} = \int d^4x \sqrt{g} \left(\frac{1}{2} F_{ab}^\mu F^{\mu \nu} - \frac{1}{4} g^{\alpha \beta} F_{\alpha \beta} F_{\mu \nu} \right) \]

\[S = S_{\text{form}} = S \left(B_{ab}^\mu \frac{F_{\alpha \beta}}{6n} - \frac{1}{2} B_{ab}^\mu B_{ab}^\nu - \frac{1}{2} F_{\alpha \beta} F_{\mu \nu} \right) \]

Field equations:
\[\frac{\delta S}{\delta B_{ab}^\mu} = 0 \]
\[\frac{\delta S}{\delta A} = \partial B + A \Lambda B = 0 \]
\[\partial B = 0 \]

Branch cuts at infinity \[\partial F = 0 \]
\[T_\text{L} \quad \text{TR} \quad = \sum_{\sigma_1, \sigma_2, \ldots, \sigma_n} F_{\sigma_1 \sigma_2 \ldots \sigma_n} \]

\[\langle T^{[\omega]} \rangle = \sum_{\text{dim}(A)} e^{\frac{i\phi}{2}} S^c S^c T^{[\omega, R]} = (\phi_{W}[Y]) \]
\[M = \sum^{(2)} \times R \]

\[S = \sum_{\alpha} \Sigma_{\beta} \epsilon^{\alpha \beta \gamma} \left[A_{\beta}^{a_1} A_{\gamma}^{a_2} + \Lambda_{\beta}^{a_1} \Lambda_{\gamma}^{a_2} - \tau_{\beta,\gamma} A_{a_1}^{a_2} A_{a_2}^{a_3} A_{a_3}^{a_4} \right] \]

\[\text{Momentum} \]

\[\Pi^I = \frac{\sum S}{S A_{I}} - \epsilon^{\alpha \beta \gamma} A_{I}^{\alpha} \]

\[\Pi^0 = 0 \Rightarrow C^I = F_{I}^{I} = 0 \]

\[H = \sum x^i \epsilon^{i} \]
Hamiltonians
Hamiltonian:

\[S = S_1 + S_3 \sum_3 \epsilon_3 \nu \]

\[\nu_3 \sum_3 \nu \]
Hamiltonian: \[S = S_0 + \sum_{x} \left[\epsilon^* \left(B_x (\partial_x - \partial_0^*) \right) \right] \]

\[\psi_n = \psi_3 \]
Hamiltonian:

$$S = S_0 + \sum_{i} \left[\sum_{\nu} \left(B_{\nu} \left(\omega_{\nu} + \nu \right) - D_{\nu} \right) + B_{\nu} F_{\nu} \right]$$

$$v_{\nu} k^3 \left(\sum_{\nu} \right)$$
Hamiltonian:

\[S = S_1 + S_2 \sum_x \left[e^{i\psi} (B_x (\psi_d \Delta - \psi_d \Delta^*) + B_x F_x \right] \\
\]

\[+ \frac{1}{2} B_{xx} B_{xx} \]
Hamiltonian: \[S = \sum_{a=1}^{N} \sum_{x=1}^{3} \left[\sum_{\nu=1}^{n} \left(B_{1\nu} (D_{a\nu} - D_{a\nu}^*) + B_{2\nu} F_{a\nu} \right) \right] \]
Hamiltonian:
\[S = S_{\text{kin}} + S_{\text{pot}} + \sum_{i} \left[\epsilon_{i} n_{i}^{*} \right] B_{i} \left(\rho_{i} - \rho_{i}^{*} \right) - B_{0} F_{x} \]

\[\Pi_{i} = \frac{\delta S}{\delta a_{i}} = \epsilon_{i} n_{i}^{*} B_{i}^{\pm} + \pm i B_{0} \left| B_{i} \right|^{2} \]
Hamiltonian: \[S = S_0 + \sum_{x} \left[3^\nu \left(B_x (Q_{ax} - Q_{ax}^*) + B_0 \frac{F_{kl}}{2} \right) \right] \]

\[\Pi^a = \frac{\delta S}{\delta A^a} = 3^\nu B^\pm_{,a} \]

\[\Pi^0 = 0 \]

\[P = \frac{\delta S}{\delta B} = 0 \]
Hamiltonian:

$$S = S_d + S_{d3} + \sum_{i}^{3} x^k \left[\delta^0 \left(B_{i1} (d_0 A_k - F \cdot A) + B_{i2} F \cdot A \right) \right]$$

$$\Pi^i = \frac{\delta S}{\delta A_k} = \delta^0 x^k B_{i} \pm \frac{1}{2} \delta^0 x^k B_{i}$$

Constraints (check) just in 2+1
Hamiltonian:

\[S = S_{lat} + \sum_{x} \left[\tilde{\sigma} \cdot \mathbf{v} \left[B_{i7} (\partial \chi - \partial A) + \mathbf{B} \cdot \mathbf{F} \right] + \Delta B_{ii} \right] \]

\[\Pi^{i} = \sum_{J_{n}} B_{i7} = \tilde{\sigma} \cdot \mathbf{v} \]

\[\Pi^{0} = 0 \]

\[P = \sum_{J_{n}} = 0 \]
Hamiltonian:
\[S = \sum_{i} S_{i+} S_{i-} \left[3 \epsilon_{ijk} \left(\text{B}_{ij} \left(\text{B}_{jk} - \text{D}_{ij} \right) + \text{B}_{ik} \right) \right] + \text{B}_{0} F_{x} \]

Constraints (Jeffreys) Justin 2+1

\[\Pi^x = \frac{\delta S}{\delta A_{x}} = \epsilon \frac{\delta S}{\delta \alpha} \]
\[\Pi^0 = 0 \]
\[P = \frac{\delta S}{\delta B} = 0 \]
Hamiltonian:
\[S = S_0 + S_0 \sum x \left[3 \nu x \left(B_{1y} \left(\delta \partial x - \partial y \right) + B_{0x} F_{2x} \right) \right. \]

\[\Pi^x = \frac{\delta S}{\delta A_y} = 3^{\nu x} B_{2x}^{\pm} \]
\[\Pi^0 = 0 \]
\[P = \frac{\delta S}{\delta B} = 0 \]

\text{Constraint:} (check) \text{ justin 2+1}
Hamiltonian: \[S = S_{dx} S_{dx} \left[\bar{3} \epsilon_{km} \left[\bar{B}_{ij} \left(\partial_{t} \bar{A}_{k} - \bar{A}_{t} \partial_{k} \right) \right] + B_{dx} F_{dx} \right] \]

\[\Pi^{a} = \frac{\delta S}{\delta A_{t}} = 3 \epsilon^{a}_{jk} B_{jk} \]

Constraints (check) justin 2+1

\[D_{a} \Pi^{a} = 0 \]

\[\Pi^{0} = 0 \]

\[P = \frac{\delta S}{\delta B} = 0 \]
Hamiltonian:

\[S = S_1 + S_2 + \sum_{x} \left[\xi^u v^k \left(B_i \left(\partial_0 x^k - \partial_k x^0 \right) \right) + B_{ax} F_{x} \right] \]

\[\Pi^a_i = \frac{\partial S}{\partial \dot{A}_a^i} = \sum_{a} B_{a}^{\pi} \]

Constraints (check) justified 2 + 1

\[G^\pi = \partial_a \Pi^a_i = 0 \]
Hamiltonian: \(S = S_A + S_B \sum_{k} \left[e^{\theta k} \left(B_{17}(B_{A_k} - B_{A_k}) + B_{27} \right) \right] \)

\[\Pi^I = \frac{\delta S}{\delta A_k} = \sum_{\mu} B_{\mu A_k} \quad \text{Constraints (check)} \quad \text{justify } 2+1 \]

\[\Pi^0 = 0 \]

\[P = \frac{\delta S}{\delta B} = 0 \]

\[\dot{\Pi}^I = F^I - \lambda B^I = 0 \]
Hamiltonian:

\[S = S_\text{int} + \sum_x \left[\varepsilon \psi^* \left(B_x \left(2 \Delta_k - 2 \Delta_x \right) \right) + B_x F_{2x} \right] \]

\[\Pi^i = \frac{\delta S}{\delta A_k} = \varepsilon \psi^* \beta_{xk}^\pm + \frac{1}{2} B_{2x} (B_{3x}^*) \]

Constraints (check): justin 2+1

\[\text{Constraints (check)} \]

\[\left\{ \begin{array}{c}
G^i = D_x \Pi^i = 0 \\
F^i = F^i - \Lambda \beta^i = 0
\end{array} \right. \]
Hamiltonian: $S = S_{a+} S_{a-} \left[3 \mu^x \left[B_{a+} (D_{a+} a_a - D_{a-} a_a) + B_{a-} a_{a-} \right] \right]$

\[\Pi^a = \frac{\delta S}{\delta a_a} = 3 \mu^x B^\pm_{a+} + 4 \alpha B_{a+} B_{a-} \]

Constraints (check) just hold 2+1

\[\gamma^I = D_a \Pi^I = 0 \]

\[\gamma^I = \Pi^I - \nabla \cdot \Phi = 0 \]
Hamiltonian:

\[S = S_A + \sum_i \left[\sum_k \left(\xi_i^* \mathcal{B}_{ik} \mathbf{a}^\dagger - \xi_i \mathcal{B}_{ik} \right) + B_{0i} \mathbf{F}_{iA} \right] \]

\[\Pi^i = \frac{\partial S}{\partial A^i} = \xi_i^* \mathcal{B}_{ik}^\dagger \]

\[\Pi^0 = 0 \]

\[\mathbf{P} = \frac{\partial S}{\partial \mathbf{B}} \]

Constraints (check):

\[G^I = D_4 \Pi^I = 0 \]

\[\mathcal{G}^I = \mathcal{T}^I - \sum_k \xi_i \mathcal{B}_{ik}^\dagger \Pi^I = 0 \]

\[\mathcal{A}_k \]
Hamiltonian: \(S = S_0 + S_{\Delta x} \sum_{i} \left[\mathbf{E}_i \cdot (\mathbf{v}_i - \mathbf{u}_i) + B_{i} F_{Ii} \right] \)

\[\Pi^i = \frac{\delta S}{\delta A_h} = \sum_{i} e_i B_i^\pm, \quad \Pi^b = 0 \]

\[P = \frac{\delta S}{\delta B} = 0 \]

Constraints (check): \(G^I = D_a \Pi^I = 0 \)

\[\Phi^I = F^I - \Lambda_6 \Pi^I = 0 \]
Hamiltonian:

\[S = S_0 + \sum_{x} \left[\epsilon_x \left(\langle a_x | (c_0 \delta a_x - c_0 \delta a_x) + B_0 F_x \right) \right] \]

\[\Pi^a = \frac{\partial S}{\partial \dot{x}^a} = \sum_{x} \epsilon_x B_{x}^a \]

Constraints (check) just in 2+1

\[G^I = D_0 \Pi^{I} = 0 \]

\[\mathcal{F}^I = F^I - \lambda \sum_{x} \Pi^I_x = 0 \]

\[\{ \mathcal{A}^I(x), \mathcal{F}^I(y) \} = S^I \delta(x-y) \]

\[\Pi^0 = 0 \]

\[P = \frac{\partial S}{\partial B^0} = 0 \]
- Chern-Simons Theory
- Back to BF
- General Relativity

\[H = \frac{1}{2m} P^2 + V(X) \]
Chern-Simons Theory

Back to BF

General Relativity

\[H = \frac{1}{2m} p^2 + V(x) \quad P_x = \partial_x S \]

\[S(x) \]
- Chern-Simons Theory
- Back to BF
- General Relativity

\[H = \frac{1}{2m} P^2 + V(x) = E \]
\[P_a = \frac{\partial}{\partial x^a} S \]
\[E = s \]
\[S = \frac{1}{2m} (\partial S)^2 + V \]
Chern-Simons Theory

Back to BFV

General Relativity

\[H = \frac{1}{2m} P^2 + V(x) = E \]
\[P_x = \partial_x S \]
\[E = \frac{\partial S}{\partial x} \]

\[S = \frac{1}{2m} (\partial S)^2 + V(x) \]
\[\Pi^i = \frac{SS}{SA} = 3^{\text{check}} B_{3k}^i \]

\[\Pi^0 = 0 \]

\[P = \frac{SS}{SB} = 0 \]

Constraints (check)

\[G^I = \mathcal{O}, \Pi^I = 0 \]

\[\xi^I = F^I - \lambda_\nu \mu \Pi^I = 0 \]

\[\text{and} \quad \exists \]
\[\Pi^I = \frac{\mathcal{L} L}{\delta A_k} = \sum_{\mu} B_{\mu}^I \]

\[\Pi^0 = 0 \]

\[P = \frac{\mathcal{L}}{\delta B} = 0 \]

Constraints (check)

\[G^I = \partial_\mu \Pi^I = 0 \]

\[F^I = F_{\gamma} - \lambda \varepsilon_{\mu\kappa\lambda} \Pi^\kappa = 0 \]

\[SCA \]
\[\Pi_i^a = \frac{SS}{SA_i} = \varepsilon^i \pi B_{A_i} \]

\[\Pi^0 = 0 \]

\[P = \frac{SS}{SB} = 0 \]

\[\Pi_i^N = \frac{SS}{SA_i} \]

Constraints (check)

\[G^I = \partial_\nu \Pi_i^I = 0 \]

\[\delta^I = F_{\nu I} - \lambda \delta_{i k} \Pi_i^k = 0 \]

\[C = \Pi_i^I \text{ on } \Sigma \]

\[\text{SCA} \]
\[H = \sum_{x} \lambda_x G_x + \mu_x \Xi_x \]

\[G^1(s) = \mathcal{D}_i \frac{\delta s}{\delta x_i} = 0 \]
\[H = \sum_{\xi} \lambda_{\xi} G^{\xi} + \mu_{\xi} F^{\xi} \]

\[
G^{1}(s) = D_{i} \frac{\delta S}{\delta A_{ii}} = 0
\]

\[
\lambda_{i} \frac{\delta S}{\delta A_{ii}} = F_{ij}
\]

\[
S^{H-J} = k S^{CS}
\]
\[H = \sum_{\xi} \lambda_{\xi} G^{\xi} + \mu_{\xi} \Xi^{\xi} \]

\[G^{1}(s) = D_i \frac{\delta S}{\delta \Lambda_i^0} = 0 \]

\[\Lambda_{i/k} \frac{\delta S}{\delta \Lambda_{i/k}} = F \]

\[S^{H-J} = k S^{cs} \]

\[k = \lambda \]
\[
H = 3 \chi e G + \mu^2 \frac{\partial}{\partial A}
\]

\[
G^2(s) = D_i \frac{S_s}{S_{n^2}} = 0 \quad \Rightarrow \quad S^H \cdot J = K \cdot S^C, \quad K = \frac{1}{4}
\]

\[
\Lambda \sum_1^{N} \frac{\partial S}{\partial A_{\mu \nu}} = F_{ij}
\]
\[g^1(s) = D_i \frac{\delta S}{\delta A^i} = 0 \]
\[\Lambda \sum_{i,k} \frac{\delta S}{\delta A_{ik}} = F_{ik} \]
\[S^{H-I} = k S^{cS} \quad k = \frac{1}{A} \]
\[A \wedge \Pi \wedge \frac{\delta S}{\delta A} \]
\[H = \sum_{\xi} \lambda_{\xi} G^{\xi} + m_{\xi} \Phi^{\xi} \]

\[G^{\xi}(s) = D_{\xi} \frac{\partial S}{\partial A_{\xi}} = 0 \]

\[S^{H-J} = k S^{cs} \]

\[k = \lambda \]

\[\prod \frac{\partial S}{\partial A} \]

\[t, Y \]

\[A_t(Y) = A_t(Y) \text{ simulated by } t = S^{cs} \]

\[A_\phi = \text{anything you like} \]
\[M = \sum_{(2)}^{(2)} x R \quad \exists \quad \text{compact} \]

\[S = \sum_{\text{dvol}} \sum_{\text{dir}} \sum_{\text{spin}} \left[A_{\mu}^I \pi_{\mu}^I + \Lambda_0 \frac{F_{\mu\nu}^I}{\sqrt{2}} \right] + \left\{ A_{\mu}^r A_{\nu}^l A_{\sigma}^k A_{\tau}^s \right\} = \frac{\sqrt{2}}{2} \sum_{\text{spin}} \left(\sum_{\text{dir}} \sum_{\text{dvol}} \right) \]

\[n^\mu = \frac{\delta S}{\delta A_{\mu}^I} = -\frac{\delta S}{\delta A_{\mu}^I} \]

\[n^0 = 0 \Rightarrow c^I = F_{\mu\nu}^I = 0 \]

\[H = \int x^I \]
$11_i = S A_{1i}$

$H = \sum_{x} \lambda_{x} G^{x} + \mu_{i} F^{i}$

$G^{i}(s) = D_{i} \frac{d s}{d A_{1i}} = 0$

$\nabla \Sigma_{i} \frac{d s}{d A_{1i}} = F_{ij}$

$S^H - J = k S^C \frac{d s}{d A}$

$A \sim \Pi \sim \frac{d s}{d A}$

$A_{i}(y_j) = A_{i}(y) $ included by $t = S f_{i}$

$A_{0} = $ anything you like
Boundary \(\Sigma^3 \) =
Boundary $\partial \Sigma^3 = \mathbb{R}$
\[\partial S^2 \neq 0 \]

\[S^2 = \sum_{B \in \mathcal{A}} \]
\[G^2(s) = \frac{D_i \sum s}{\sum A_i} = 0 \quad \text{and} \quad \sum_{j,k} \frac{SS}{SA_{jk}} = F_{ij} \]

\[S_{H-I} = K S_{CS} \quad K = \frac{1}{A_{in}} \]

Hamiltonian:
\[S = S_d + S_{3^{3/2}} \left[\varepsilon_{\omega k} B_{3k}^{\pm} \right] + (\omega k - D_\omega A_\omega) + B_{\omega x} F_{\omega x} \]

\[\Pi^i = \frac{\sum s}{\sum A_i} = \varepsilon_{\omega k} B_{3k}^{\pm} \]

\[\Pi^0 = 0 \]

\[P = \frac{\sum s}{\sum B} = 0 \]

\[S = S(N) \quad SCA(i) \]

\[G = \frac{x_i}{x_i} \]

\[x_i - S_i, \quad \delta S_i \]

\[SCA(i), \delta S_i \]

\[\varepsilon = \frac{FA_{ik}}{\delta S} \]
Hamiltonian:

\[S = S_A + \sum_x \left[\sum_y \left[B_{xy} \left(\phi_{xy} - \alpha_x \phi_y \right) \right] + B_{xx} F_{xx} \right] \]

\[\Pi^x = \sum_x \left[\frac{S_s}{A_x} \right] = \sum_y B_{yx} \]

\[F_{xx} \]

Constraints (check):

\[G_{ii} = D_{ii} \Pi^i = 0 \]

\[\Pi^i = F_{iy} - \lambda_{iy} \Pi^i = 0 \]

\[H = \sum_x \lambda_x G_{xx} + \mu_x F_{xx} \]
\[\partial S \neq 0 \]

\[S = \sum_{\Sigma} A \delta S = \sum_{\Sigma} \delta S \]
\[\delta S = \int_{\partial \Sigma} \beta \, dS + \int_{\Sigma} \nabla \cdot \varepsilon \, dS \]
\[\delta S = \sum_{x \in \mathbb{R}} B^I_a \partial S^a = \sum_{x \in \mathbb{R}} B^I_a S^a - S_{x \in \mathbb{R}} (\partial B)^I \cdot \delta A \]
\[\delta S = \sum_{x \in R} B^a \, \delta A^a = \sum_{x \in R} B^a \, S^a - \sum_{x \in R} (\delta B) \cdot SA \]
\[\delta S = \sum_{x \in \mathbb{R}} B^I x \, \delta A^I = \sum_{\omega \times R} B^I \delta A^I - \int_{\partial \Sigma} (\omega \cdot \mathbf{B}) \, \delta A \]

3 ways to deal with boundary term
\[\delta S = \int_{\Sigma \times \mathbb{R}} B^I \, \delta A^I = \int_{\Sigma \times \mathbb{R}} B^I A^I \, \delta A^I - \int_{\Sigma \times \mathbb{R}} (\partial B^I) A^I \delta A \]

3 ways to deal w/ boundary term:

1) \(\delta A \big|_{\partial \Sigma} = 0 \)
\[\delta S = \sum_{\Sigma} B^i \, \delta A^i = \sum_{\partial \Sigma} B^i \, A^i - S_{\Sigma} \delta A \]

3 ways to deal with boundary term:
1. \(\delta A |_{\partial \Sigma} = 0 \)
2. \(\partial R |_{\partial \Sigma} = 0 \)
\[
\delta S = \int_{\Sigma^2 \times \mathbb{R}} B^i A^i - \int_{\partial \Sigma^2 \times \mathbb{R}} (\partial B) \cdot A
\]

3 ways to deal with boundary term

1) \(\delta A \big|_{\partial \Sigma^2} = 0\)
2) \(B \big|_{\partial \Sigma^2} = 0\)
3) add a boundary action \(S \rightarrow S + S^0\)

\(S^0 = \int_{\partial \Sigma^2} \)
\[\delta S = \int B^2 \, d\delta A = \int \vec{B} \cdot \delta \vec{A} \quad \text{3 ways to deal w/ boundary term} \]

1) \[\delta A |_{\partial} \neq 0 \]
2) \[B|_{\partial} = 0 \]
3) \[\text{add a boundary field} \]

\[\int S + \int S^0 \quad S^0 = \int_{\partial} \]
\[\delta S = \int_{\Sigma} \left(\sum_{\mathbb{R}} B_{A} \delta A^{A} - \sum_{\mathbb{R}} (D B). A \right) \delta \Sigma \]

3 ways to deal w boundary term

1) \(\delta A_{\Sigma} = 0 \)
2) \(B_{\Sigma} = 0 \)
3) add a boundary action \(S \rightarrow S + S^{0} \quad S^{0} = \int_{\partial \Sigma} \psi \)

\[S^{0} \]
\[\delta S = \int_{\mathbb{R}^3} \mathbf{B} \cdot \delta \mathbf{A} \, d\mathbf{r} = \int_{\mathbb{R}^3} \mathbf{B} \cdot \delta \mathbf{A} \, d\mathbf{r} - \int_{\partial \mathbf{R}} \mathbf{B} \cdot \delta \mathbf{A} \, d\mathbf{r} \]

3 ways to deal with boundary term:

1) \(\delta \mathbf{A} |_{\partial \mathbf{R}} = 0 \)
2) \(\mathbf{B} |_{\partial \mathbf{R}} = 0 \)
3) add a boundary action \(S \to S + \mathcal{S} \quad \mathcal{S} = \int_{\partial \mathbf{R}} \)

\[\delta S^{\text{tot}} = \int_{\mathbb{R}^3} \delta \mathbf{A} [\mathbf{B} + \frac{\delta \mathbf{B}}{\delta \mathbf{A}}] \, d\mathbf{r} \]
\[ds = S \sum_{x \in \mathbb{R}} B^x A^x \delta A^x = \int_{\mathbb{R}} B^x A^x \delta A^x - \int_{\mathbb{R}^2} (B \cdot \delta A) \cdot A \]

3 ways to deal with boundary term:

1) \(\delta A |_{x=0} = 0 \)
2) \(B |_{x=0} = 0 \)
3) add a boundary action \(S \rightarrow S + S^0 \)

\[S^{\text{eff}} = \int_{\mathbb{R}} S \delta A [B + \frac{\delta B}{\delta A}] + \frac{\delta B}{\delta B} \delta B \]
\[S = \int_{\mathbb{R}} B^2 \, \delta \, A^2 = \int_{\mathbb{R}} B^2 \, \delta A^2 - \int_{\mathbb{R}} (\partial B) \cdot \delta A \]

3 ways to deal with boundary term:
1) \(\delta A|_{\partial \Omega} = 0 \)
2) \(B|_{\partial \Omega} = 0 \)
3) add a boundary action \(S \rightarrow S + S^0 \)

\[S^{\text{new}} = \int_{\mathbb{R}} \delta A \left[B + \frac{\delta \mathcal{L}}{\delta A} \right] + \delta B \frac{\delta \mathcal{L}}{\delta B} \]
\[S = S_{\mathbb{R}^n} A^2 - S_{\partial A} \]

3 ways to deal with boundary term:

1) \(\delta A |_{\partial A} = 0 \)
2) \(\delta B |_{\partial A} = 0 \)
3) Add a boundary action \(S \rightarrow S + S' \)

\[S' = \int_{\partial A} \delta A [B + \delta f] \]
\[\mathcal{S} = S_{\mathbb{R}^2}^{\mathbb{R}^2} \]
\[DS = \sum_{x \in \mathbb{R}} B_x^2 \, dS = \sum_{x \in \mathbb{R}} B_x^2 \, dA^2 - \sum_{x \in \mathbb{R}} (\partial_x B_x) \, dA \]

3 ways to deal w boundary term

1) \[\partial A |_{x = 0} = 0 \]
2) \[B |_{x = 0} = 0 \]
3) add a boundary action \[S \rightarrow S + S^0 \]

\[S_{\text{New}} = \sum_{x \in \mathbb{R}} \delta A \left[B + \frac{\delta B}{\delta A} \right] \]
\[S = \sum_{x \in \mathbb{R}} B^x \delta A^x = \sum_{x \in \mathbb{R}} B^x \delta A^x - \sum_{x \in \mathbb{R}} \delta (\partial B) \cdot \delta A \]

3 ways to deal w. boundary term:
1) \(\delta A |_{x_0=0} = 0 \)
2) \(\mathbf{B} |_{x_0=0} = 0 \)
3) add a boundary action \(S \Rightarrow S + S' \)
 \[S' = \sum_{x \in \mathbb{R}} \delta A \left[B + \frac{\delta \mathcal{L}}{\delta A} \right] = \sum_{x \in \mathbb{R}} \delta A \left[B - \frac{\mathbf{F}}{\partial_n} \right] \]
\[ds = S_{\mathbb{R}} - \int_{\partial R} S_{\mathbb{R}} \]

3 ways to deal with boundary term:
1) $\delta A|_{\partial \mathbb{R}} = 0$
2) $B|_{\partial \mathbb{R}} = 0$
3) Add a boundary action $S \rightarrow S + S^0$
\[S^0 = \int_{\partial \mathbb{R}} Y_{\mathbb{R}}(A) \frac{k}{4\pi} \]
\[S^{\text{new}} = S_{\mathbb{R}}[B + \frac{\delta P}{\delta A}] = S_{\mathbb{R}}[B - \frac{k}{2\pi} F] \]
\[\delta S = \int_{\mathbb{R}^2} \nabla A \cdot \nabla A^2 = \int_{\mathbb{R}^2} B \cdot A - \int_{\mathbb{R}^2} (\partial \cdot B) \cdot A \]

3 ways to deal w boundary term

1) \[\delta A |_{\partial \mathcal{A}} = 0 \]
2) \[B |_{\partial \mathcal{A}} = 0 \]
3) add a boundary action \[S \rightarrow S + S^0 \]

\[S_{\text{new}}^{\alpha} = \int_{\mathbb{R}^2} \delta A \left[B + \frac{\delta \phi}{\delta A} \right] = \int_{\mathbb{R}^2} \delta A \left[B - \frac{\delta F}{\delta A} \right] \]
\[dS = S_{\varepsilon} B^\varepsilon A^2 = \left(B^\alpha S^2 \right)_{\varepsilon} = S_{\varepsilon, \alpha} \]

3 ways to deal w. boundary term:
1) \(B\mid_{\varepsilon=0} = 0 \)
2) \(B \mid_{\varepsilon} = 0 \)
3) add a boundary action \(S \rightarrow S + S^b \)
\[S^{\text{add}} = S_{\varepsilon} A \left[B + \frac{\delta P}{\delta A} \right] = S_{\varepsilon} A \left[B - \frac{\delta F}{\delta A} \right] \]
\[\delta S = \int_{\mathbb{R}} \delta A \cdot \delta A^2 = \int_{\mathbb{R}} \delta A \cdot \delta A^2 - \int_{\mathbb{R}} (\delta B \cdot \delta A^2) \]

3 ways to deal with boundary term:

1) \[\delta A |_{\partial \mathbb{R}} = 0 \]
2) \[\delta B |_{\partial \mathbb{R}} = 0 \]
3) Add a boundary action \[S \rightarrow S + S^0 \]

\[S^0 = \sum_{m} \int \left[F - \frac{\kappa}{4\pi} B \right] \]

\[\delta S^0 = \int_{\mathbb{R}} \delta A \left[\delta B + \frac{\delta F}{\delta A} \right] = \int_{\mathbb{R}} \delta A \left[\delta B - \frac{\kappa}{4\pi} F \right] \]
\[\delta S = \int_{\mathbb{R}} B^B \delta A^a = \int_{\mathbb{R}} \frac{\partial B^B}{\partial x^a} \delta A^a - \int_{\partial \mathcal{R}} (\partial B^B) \delta A\]

3 ways to deal with boundary term:
1) \(\delta A^a \big|_{\partial \mathcal{R}} = 0 \)
2) \(B \big|_{\partial \mathcal{R}} = 0 \)
3) add a boundary action \(S \to S + S^\circ \)

\[
S^{\circ} = \int_{\mathbb{R}} \delta A^a \left[B + \frac{\partial S}{\partial A^a} \right] = \int_{\mathbb{R}} \delta A^a [B]
\]
\[DS = \int_{2xR} B \cdot \delta A - \int_{\partial xR} \frac{\delta A}{\partial x} = \int_{\partial R} \delta B \cdot \delta A - \int_{\partial R} \delta A \cdot \delta B \]

3 ways to deal with boundary term

1) \[\delta A |_{\partial R} = 0 \]
2) \[\delta B |_{\partial R} = 0 \]

3) add a boundary action \[S \rightarrow S + S^0 \]

\[S^0 = \int_{\partial R} \frac{\delta B}{\delta A} \]

\[S^0_1 = \int_{\partial R} \delta A \left[B + \frac{\partial B}{\partial R} \right] = \int_{\partial R} \delta A \left[B - \frac{1}{2} F \right] \]

\[\left(F - \frac{1}{2} B \right) \cdot \frac{\delta B}{\delta A} = 0 \]
\[\delta S = \int_{\partial \Sigma} \delta A^a \varepsilon \hat{A} A^2 = \int_{\partial \Sigma} \left(B^a A^2 - S_{\text{int}} \right) \delta A^a \varepsilon \hat{A} \]

3 ways to deal with boundary term

1) \(\delta A^a \varepsilon \partial_{\Sigma} = 0 \)
2) \(\delta B \varepsilon \partial_{\Sigma} = 0 \)
3) add a boundary term \(S \to S + S^\beta \)

\[S^{\beta} = \int_{\partial \Sigma} \delta A^a \left[B + \frac{\delta B}{\delta A} \right] = \int_{\partial \Sigma} \delta A^a \left[B - \frac{\delta B}{\delta A} \right] \]