Title: Concluding Remarks

Date: May 25, 2007 05:40 PM

URL: http://pirsa.org/07050082

Abstract:

Pirsa: 07050082

Exotic States of Hot & Dense Matter and their Dual Description Wrap-up

Laurence Yaffe

University of Washington

Page 2/17

Heavy ion collisions

QGP @ RHIC ≠ weakls interacting gas

Important discovery.

Pirsa: 07050082 Page 4/17

Video games are good for science.

Z. Fodor

Pires: 07050082

Video games are good for science.

Z Fodor

Extracting spectral functions tough, not hopeless. G. Aarts

Video games are good for science.

Z. Fodor

Extracting spectral functions tough, not hopeless.

G. Aarts

Large $N_{\rm c}$ works! $3 \approx \infty$.

M. Teper

Pirsa: 07050082 Page 7/17

AdS/CFT for QCD

Bad name. Much Better: gauge/string duality.

Pirsa: 07050082 Page 8/17

AdS/CFT for QCD

Wonderful progress.

P. Argyres, J. Erdmenger, N. Evans, S. Gubser,
C. Herzog, R. Janik, K. Kajantie, Y. Kovchegov,
H. Liu, D. Mateos, R. Myers, L. Pando Zayas,
K. Rajagopal, D. Son, M. Stepahov, D. Teaney

Pirsa: 07050082 Page 9/17

AdS/CFT for QCD

Much more to do:

```
light quark dynamics, \hat{q} controversy \langle T^{\mu\nu}(x) \rangle_{\rm interesting\ non-eq.\ states} important! 1/\lambda corrections, 1/N_{\rm c} corrections, results for more QCD-like theories (with known gravity duals), ... L. Pando Zayas A. Buchel, ...
```

Page 10/17

AdS/CFT: Relavance to real QGP?

S. Datta & S. Gupta

Screening masses:

m/T temperature independent for $1.5 \le T/T_{\rm e} \le 4$.

Page 11/17

AdS/CFT: Relavance to real QGP?

	Great .	come	vario.	ner.	Gubser.	5.72	17
A.	IE.M.	CORRE	381154	JES.	Guoser,	3-43-	ar.

22

6 Comparing N = 4 to the QGP

quantity	formula	obvious	alternative	QGP	comments
s/s _{free} [21, 22]	$\frac{3}{4} + \frac{45\zeta(3)}{32\lambda^{3/2}}$	0.77	0.88	0.6 - 0.9	lattice e. g. [23] HTL [24, 25]
$\frac{\eta/s}{[26, 27]}$	$\frac{1}{4\pi} + \frac{135\zeta(3)}{32\pi\lambda^{3/2}}$	0.10	0.2	0 - 0.3	
τ _{therm} [13]	$\frac{1}{2.2T_{\mathrm{peak}}}$	0.3 fm	0.4 fm	0.6 - 1.0 fm	Also [28, 29] T _{peak} =300 MeV
t _{charm} [1, 3, 2]	$\frac{2m_c}{\pi T^2 \sqrt{\lambda}}$	0.65 fm	2.1 fm	3 - 6 fm	[30, 31, 32] hadronization b-tagging
\hat{q} [33] \hat{q}_T [4, 5]	$\frac{\pi^{3/2}\Gamma(3/4)\sqrt{\lambda}T^3}{\Gamma(5/4)}$ $2\pi\sqrt{\lambda\gamma}T^3$	$\begin{array}{c} 2.6 \frac{\mathrm{GeV^2}}{\mathrm{fm}} \\ 5.8 \frac{\mathrm{GeV^2}}{\mathrm{fm}} \end{array}$	$0.61 \frac{\rm GeV^2}{\rm fm} = 1.4 \frac{\rm GeV^2}{\rm fm}$	$1-15\frac{\rm GeV^2}{\rm fm}$	\hat{q}_T for charm @ $E=10~{ m GeV}$
m _D [18]	$(10.6 - \frac{6.7}{\lambda^{3/2}}) T$	3.6 GeV	2.6 GeV	$\sim 1.9\mathrm{GeV}$	lattice [34] T=340 MeV 6.7 conjectural

Table 1: A few comparisons between N=4 SYM and the QGP. QGP numbers are representative ranges. $T=250\,\mathrm{MeV}$ unless otherwise noted. $T_c=170\,\mathrm{MeV}$, $m_c=1.4\,\mathrm{GeV}$ assumed.

Pirsa: 07050082 Page 12/17

Goal: "Extrapolate to Reality"

D. Teaney

G. Moore

E. Shuryak

A. Rebhan

Pirsa: 07050082 Page 13/17

Other directions

Cold and dense matter

No end of subtleties, need data!

V. Miranskyy

I. Shovkovy

T. Schaefer

T. Kunihiro

E. Ferrer

Pirsa: 07050082 Page 14/17

Other directions

Cold and dense matter

No end of subtleties, need data!

V. Miranskyy

I. Shovkovy

T. Schaefer

T. Kunihiro

E. Ferrer

Cosmological applications

J. Kapusta

A. Zhitnitsky

Pirsa: 07050082 Page 15/17

Other directions

Cold and dense matter

No end of subtleties, need data!

V. Miranskyy

I. Shovkovy

T. Schaefer

T. Kunihiro

E. Ferrer

Cosmological applications

J. Kapusta

A. Zhitnitsky

Quantum critical transport

P. Kovtun

Pirsa: 07050082 Page 16/17

Thanks...

to the organizers and the PI!

Pirsa: 07050082 Page 17/17