Title: Categorizing nonclassical phenomena: the explanatory power of epistemic restrictions and contextuality
Date: Jun 04, 2007 02:30 PM
URL: http://pirsa.org/07060037

Abstract:
Categorizing nonclassical phenomena: the explanatory power of epistemic restrictions and contextuality

Robert Spekkens
Department of Applied Mathematics and Theoretical Physics
University of Cambridge

June 4, 2007

Funding by: The Royal Society
Categorizing nonclassical phenomena: the explanatory power of epistemic restrictions and contextuality

Robert Spekkens
Department of Applied Mathematics and Theoretical Physics
University of Cambridge

June 4, 2007
Operational Q physics and the Q-C contrast, PI

Funding by: The Royal Society
Much recent foundations work suggests (to me at least) the following foundational principle for quantum theory:

Maximal information about reality is incomplete information

- Caves and Fuchs, quant-ph/9601025
- Rovelli, quant-ph/9609002
- Hardy, quant-ph/9906123
- Brukner and Zeilinger, quant-ph/0005084
- Hardy, quant-ph/0101012
- Kirkpatrick, quant-ph/0106072
- Collins and Popescu, quant-ph/0107082
- Fuchs, quant-ph/0205039
- Emerson, quant-ph/0211035
- Spekkens, quant-ph/0401052
- Grinbaum, quant-ph/0509106
Much recent foundations work suggests (to me at least) the following foundational principle for quantum theory:

Maximal information about reality is incomplete information

Caves and Fuchs, quant-ph/9601025
Rovelli, quant-ph/9609002
Hardy, quant-ph/9906123
Brukner and Zeilinger, quant-ph/0005084
Hardy, quant-ph/0101012
Kirkpatrick, quant-ph/0106072
Collins and Popescu, quant-ph/0107082
Fuchs, quant-ph/0205039
Emerson, quant-ph/0211035
Spekkens, quant-ph/0401052
Grinbaum, quant-ph/0509106

But this does not seem to be enough to derive quantum theory within a classical framework
Example: toy theory of quant-ph/0401052

Ontic states

\[
\begin{array}{c}
| \bullet \bullet \bullet \rangle \\
| \bullet \bullet \rangle \\
| \bullet \rangle \\
\end{array}
\quad
\begin{array}{c}
| \bullet \rangle \\
| \bullet \bullet \rangle \\
| \bullet \bullet \bullet \rangle \\
\end{array}
\]

Epistemic states

\[
\begin{array}{c}
| 0 \rangle \\
| 1 \rangle \\
| + \rangle \\
| - \rangle \\
| +i \rangle \\
| -i \rangle \\
\end{array}
\quad
\begin{array}{c}
| \pm \rangle = |0 \rangle \pm |1 \rangle \\
| \pm i \rangle = |0 \rangle \pm i|1 \rangle \\
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{2} I \\
\end{array}
\]
Phenomena that can be explained (qualitatively at least) as the result of an epistemic restriction

- Coherent superposition
- Bi-partite entanglement
- tri-partite entanglement
- The monogamy of entanglement
- The ambiguity of mixtures
- No universal state inverter
- Mutually unbiased bases
- Neumark and Stinespring extension
- Choi-Jamiolkowski isomorphism
- ...

- Noncommutativity
- Interference
- No-cloning
- Teleportation
- Key distribution
- Dense coding
- No bit commitment
- Interaction-free measurement
- Quantum eraser
- ...

See: Spekkens quant-ph/0401052
Also Bartlett, Rudolph, and Spekkens, in preparation
What the toy theories fail to capture

- They are noncontextual (no Bell-Kochen-Specker theorem)
- They are local (no violations of Bell inequalities)
- They do not reproduce the full set of quantum states, measurements, and transformations
- Two levels of a toy qutrit do not yield a toy qubit
- There is no exponential speed-up relative to classical computation
- ...
What the toy theories fail to capture

- They are **noncontextual** (no Bell-Kochen-Specker theorem)
- They are **local** (no violations of Bell inequalities)
- They do not reproduce the full set of quantum states, measurements, and transformations
- Two levels of a toy qutrit do not yield a toy qubit
- There is no exponential speed-up relative to classical computation
- ...

We can categorize nonclassical phenomena in this way

The failures help to identify the conceptual elements of quantum theory that are missing from these toy theories
Despite having no axiomatization to offer, I argue that a research program seeking a particular kind of realist axiomatization appears to be promising.

The approach is:

Be very conservative. Keep almost all classical notions of reality, except:

Axiom 1. There is a restriction to how much an observer (or any system) can know about the real state of the systems with which she interacts.

Axiom 2. ??? (some change to our classical notion of reality)

Contextuality is an umbrella for many missing phenomena and may therefore be our best clue for how to proceed.
Phenomena that are a form of contextuality

- all variants of the Bell-Kochen-Specker theorem (algebraic, state-specific, statistical, continuous, discrete)

- all variants of Bell’s theorem

- novel theorems that apply even in 2d Hilbert spaces

- The necessity of having negativity in quasiprobability representations of quantum theory

- Aspects of pre- and post-selected “paradoxes”

- Better-than-classical performance of oblivious transfer

- all variants of von Neumann's no-go theorem

- Quantized spectra? Fermionic statistics?
Outline

• Generalizing the notion of noncontextuality to arbitrary procedures and operational theories

• Why von Neumann’s no-go theorem is a proof of contextuality

• Conclusions
It was shown by Bell (1966) and Kochen and Specker (1967) that a noncontextual hidden variable model of quantum theory for Hilbert spaces of dimensionality 3 or greater is impossible. That is, quantum theory is contextual.

This is the Bell-Kochen-Specker theorem.
The traditional definition of contextuality does not apply to:

(1) arbitrary operational theories
(2) preparations or unsharp measurements
(3) indeterministic hidden variable models
The traditional definition of contextuality does not apply to:

(1) arbitrary operational theories
(2) preparations or unsharp measurements
(3) indeterministic hidden variable models

Proposed new definition:
A noncontextual HV model of an operational theory is one wherein if two experimental procedures are operationally equivalent, then they have equivalent representations in the HV model.
Operational theories
Operational theories

Preparation P Measurement M

These are defined as lists of instructions
Operational theories

These are defined as lists of instructions

An operational theory specifies

\[p(k|P, M) \equiv \text{The probability of outcome } k \text{ of } M \text{ given } P. \]
Defining **operational equivalence** of procedures

For preparations

\[P \sim P' \text{ if } p(k|P, M) = p(k|P', M) \text{ for all } M. \]
Defining operational equivalence of procedures

For preparations

\[P \sim P' \text{ if } \]
\[p(k|P, M) = p(k|P', M) \text{ for all } M. \]
Defining operational equivalence of procedures

For measurements

$M \sim M'$ if

$p(k|P, M) = p(k|P, M')$ for all P.
Defining **operational equivalence** of procedures

For measurements

\[M \simeq M' \text{ if } \]
\[p(k|P, M) = p(k|P, M') \text{ for all } P. \]
A hidden variable model of an operational theory assumes primitives of systems and properties.

\[\int \mu_P(\lambda) d\lambda = 1 \]

\[\mu_P(\lambda) \]

\[\lambda \]
A hidden variable model of an operational theory assumes primitives of systems and properties.

\[\int \mu_P(\lambda) d\lambda = 1 \]

\[0 \leq \xi_{M,k}(\lambda) \leq 1 \]

\[\sum_k \xi_{M,k}(\lambda) = 1 \text{ for all } \lambda \]

\[\xi_{M,1}(\lambda) \]
\[\xi_{M,2}(\lambda) \]
\[\xi_{M,3}(\lambda) \]
A hidden variable model of an operational theory assumes primitives of systems and properties.

\[p(k|P, M) = \int d\lambda \xi_{M,k}(\lambda) \mu_P(\lambda) \]
Defining noncontextuality in operational theories

Preparation Noncontextuality

if \(P \sim P' \) then \(\mu_P(\lambda) = \mu_{P'}(\lambda) \)
Defining noncontextuality in operational theories

Preparation Noncontextuality

if $P \simeq P'$ then $\mu_P(\lambda) = \mu_{P'}(\lambda)$
Defining noncontextuality in operational theories

Preparation Noncontextuality

If $P \simeq P'$ then $\mu_P(\lambda) = \mu_{P'}(\lambda)$

Differences between P and P' are differences of context
Defining noncontextuality in operational theories

Measurement Noncontextuality

if $M \sim M'$ then $\xi_{M,k}(\lambda) = \xi_{M',k}(\lambda)$
Defining noncontextuality in operational theories

Measurement Noncontextuality

If $M \sim M'$ then $\xi_{M,k}(\lambda) = \xi_{M',k}(\lambda)$
Defining noncontextuality in operational theories

Measurement Noncontextuality

If $M \simeq M'$ then $\xi_{M,k}(\lambda) = \xi_{M',k}(\lambda)$

Differences between M and M' are differences of context.
Quantum theory
Defining noncontextuality in quantum theory

Preparation Noncontextuality in QT

if $P, P' \rightarrow \rho$ then $\mu_P(\lambda) = \mu_{P'}(\lambda) = \mu_\rho(\lambda)$
Defining noncontextuality in quantum theory

Measurement Noncontextuality in QT

if $M, M' \rightarrow \{E_k\}$ then $\xi_{M,k}(\lambda) = \xi_{M',k}(\lambda) = \xi_{E_k}(\lambda)$
The traditional notion of noncontextuality
How to formulate the traditional notion of noncontextuality:

\[|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle \leftrightarrow \chi_1(\lambda), \chi_2(\lambda), \chi_3(\lambda) \]

\[|\psi_1\rangle', |\psi_2\rangle', |\psi_3\rangle' \leftrightarrow \chi_1'(\lambda), \chi_2'(\lambda), \chi_3'(\lambda) \]
This is equivalent to assuming:

\[\{ |\psi_1\rangle\langle\psi_1|, I - |\psi_1\rangle\langle\psi_1| \} \]

measure \(|\psi_2\rangle \) and \(|\psi_3\rangle \)

coarse-grain \(|\psi_2\rangle \) and \(|\psi_3\rangle \)

\[\chi_1(\lambda) \]
\[\chi_{-1}(\lambda) \]

\[M \]

\[M' \]

measure \(|\psi_2\rangle \) and \(|\psi_3\rangle \)

coarse-grain \(|\psi_2\rangle \) and \(|\psi_3\rangle \)

\[\{ |\psi_1\rangle\langle\psi_1|, I - |\psi_1\rangle\langle\psi_1| \} \]
But recall that the most general representation was

\[\{P_k\} \rightarrow M \leftrightarrow \xi_{P_1}(\lambda) \rightarrow \lambda \]
\[\xi_{P_2}(\lambda) \rightarrow \lambda \]
\[\xi_{P_3}(\lambda) \rightarrow \lambda \]

Therefore:

traditional notion of noncontextuality = revised notion of noncontextuality for sharp measurements and outcome determinism for sharp measurements
So, the proposed definition of noncontextuality is not simply a generalization of the traditional notion.

For sharp measurements, it is a revision of the traditional notion.
Local determinism:
We ask: Does the outcome depend on space-like separated events (in addition to local settings and λ)?

Bell’s local causality:
We ask: Does the probability of the outcome depend on space-like separated events (in addition to local settings and λ)?
Local determinism:
We ask: Does the outcome depend on space-like separated events (in addition to local settings and \(\lambda\))?

Bell’s local causality:
We ask: Does the probability of the outcome depend on space-like separated events (in addition to local settings and \(\lambda\))?

Traditional notion of measurement noncontextuality:
We ask: Does the outcome depend on the measurement context (in addition to the observable and \(\lambda\))?

The proposed revised notion of measurement noncontextuality:
We ask: Does the probability of the outcome depend on the measurement context (in addition to the observable and \(\lambda\))?
Local determinism:
We ask: Does the outcome depend on space-like separated events (in addition to local settings and λ)?

Bell's local causality:
We ask: Does the probability of the outcome depend on space-like separated events (in addition to local settings and λ)?

Traditional notion of measurement noncontextuality:
We ask: Does the outcome depend on the measurement context (in addition to the observable and λ)?

The proposed revised notion of measurement noncontextuality:
We ask: Does the probability of the outcome depend on the measurement context (in addition to the observable and λ)?

Noncontextuality and determinism are separate issues
traditional notion of noncontextuality = revised notion of noncontextuality for sharp measurements and outcome determinism for sharp measurements

No-go theorems for previous notion are not necessarily no-go theorems for the new notion!

In face of contradiction, could give up ODSM
However, one can prove that

preparation noncontextuality → outcome determinism for sharp measurements
However, one can prove that

preparation noncontextuality \quad \rightarrow \quad \text{outcome determinism for sharp measurements}

Proof

\[|\psi_1\rangle \quad |\psi_2\rangle \quad |\psi_3\rangle \]

\[\chi_{\psi_1}(\lambda) \rightarrow \lambda \]
\[\chi_{\psi_2}(\lambda) \rightarrow \lambda \]
\[\chi_{\psi_3}(\lambda) \rightarrow \lambda \]
However, one can prove that

preparation noncontextuality → outcome determinism for sharp measurements

Proof

\[|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle \]

\[\chi_{\psi_1}(\lambda), \chi_{\psi_2}(\lambda), \chi_{\psi_3}(\lambda) \]

\[\mu_{\psi_1}(\lambda), \mu_{\psi_2}(\lambda), \mu_{\psi_3}(\lambda) \]
However, one can prove that

preparation noncontextuality \rightarrow \text{outcome determinism for sharp measurements}

Proof

\[\mu_{I/3}(\lambda) = \frac{1}{3} \mu_{\psi_1}(\lambda) + \frac{1}{3} \mu_{\psi_2}(\lambda) + \frac{1}{3} \mu_{\psi_3}(\lambda) \]

\[\mu_{I/3}(\lambda) = p \mu_{\psi}(\lambda) + \ldots \]
We’ve established that

preparation noncontextuality \rightarrow \text{outcome determinism for sharp measurements}

Therefore:

measurement noncontextuality and
preparation noncontextuality

measurement noncontextuality and
outcome determinism for sharp measurements
We’ve established that

preparation noncontextuality → outcome determinism for sharp measurements

Therefore:

measurement noncontextuality and preparation noncontextuality → Traditional notion of noncontextuality
We’ve established that

preparation noncontextuality → outcome determinism for sharp measurements

Therefore:

measurement noncontextuality

and

preparation noncontextuality → Traditional notion of noncontextuality

no-go theorems for the traditional notion of noncontextuality can be salvaged as no-go theorems for the generalized notion

... and there are many new proofs
Phenomena that are a form of contextuality

- all variants of the Bell-Kochen-Specker theorem (algebraic, state-specific, statistical, continuous, discrete)
- all variants of Bell’s theorem
- novel no-go theorems, including many in 2d Hilbert spaces (see PRA 71, 052108)
- The necessity of having negativity in quasiprobability representations of quantum theory
- Aspects of pre- and post-selected “paradoxes” (joint work with M. Leifer, PRL 95, 200405)
- Better-than-classical performance of oblivious transfer (joint work with B. Toner)
- all variants of von Neumann’s no-go theorem (rest of talk)
Von Neumann’s no-go theorem for hidden variables is a proof of contextuality
von Neumann’s assumptions about HV models of QT

- \(A \rightarrow f_A(\lambda) \)

- \(f_A(\lambda) \in \text{spec}(A) \)

\[
\left(\begin{array}{l}
 f_P(\lambda) = 0 \text{ or } 1 \\
 f_I(\lambda) = 1 \\
\end{array} \right) \quad \text{“Dispersion-free ensemble”}
\]

- if \(A = B + C \) then \(f_A(\lambda) = f_B(\lambda) + f_C(\lambda) \)
 even if A, B, and C do not commute
 The latter goes beyond traditional noncontextuality

Theorem: Such a HV model of quantum theory does not exist.
Von Neumann’s proof

if \(A = B + C \) then \(f_A(\lambda) = f_B(\lambda) + f_C(\lambda) \)
or equivalently, \(f_{B+C}(\lambda) = f_B(\lambda) + f_C(\lambda) \)

Lemma: Any function \(g \) that is a linear function over the Hermitian operators has the form

\[
g(A) = Tr(\omega A)
\]

for some Hermitian operator \(\omega \).

\[
\rightarrow f_A(\lambda) = \text{Tr}(\omega(\lambda) A)
\]

\(f_P(\lambda) \geq 0 \) for all \(P \) \(\rightarrow \) \(\omega(\lambda) \geq 0 \)

\(f_I(\lambda) = 1 \) \(\rightarrow \) \(\text{Tr}(\omega(\lambda)) = 1 \)

\(\omega(\lambda) \) is a density operator

But \(f_P(\lambda) = 0 \) or \(1 \) for all \(P \) **CONTRADICTION**
A simpler proof (Belifante, Ballentine)

\[S_n = \frac{1}{\sqrt{2}} S_x + \frac{1}{\sqrt{2}} S_y \]

\[f_n(\lambda) = \frac{1}{\sqrt{2}} f_x(\lambda) + \frac{1}{\sqrt{2}} f_y(\lambda) \]

\[\in \{-\frac{1}{2}, \frac{1}{2}\} \quad \in \{-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\} \]

CONTRADICTION
A simpler proof (Belifante, Ballentine)

\[S_n = \frac{1}{\sqrt{2}} S_x + \frac{1}{\sqrt{2}} S_y \]

\[f_n(\lambda) = \frac{1}{\sqrt{2}} f_x(\lambda) + \frac{1}{\sqrt{2}} f_y(\lambda) \]

\[\in \{-\frac{1}{2}, \frac{1}{2}\} \]

\[\in \{-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\} \]

CONTRADICTION

Note: The solution of Horn’s problem constrains the spectra of A, B, C when A=B+C. This may yield insights into such no-go theorems (joint work with J. Emerson and M. Christandl)
We argue that noncontextuality for preparations and measurements implies von Neumann’s assumptions.

Therefore, no-go theorems based on vN’s assumptions can be salvaged as no-go theorems for the generalized notion of NC.
von Neumann’s assumptions about HV models of QT

- \(A \rightarrow f_A(\lambda) \)

- \(f_A(\lambda) \in \text{spec}(A) \)

\[
\begin{pmatrix}
 f_P(\lambda) = 0 \text{ or } 1 \\
 f_I(\lambda) = 1
\end{pmatrix}
\]

“Dispersion-free ensemble”

- if \(A = B + C \) then \(f_A(\lambda) = f_B(\lambda) + f_C(\lambda) \)

even if \(A, B, \) and \(C \) do not commute

The latter goes beyond traditional noncontextuality
von Neumann’s assumptions about HV models of QT

- $A \rightarrow f_A(\lambda)$ justified by noncontextuality for sharp mmts

- $f_A(\lambda) \in \text{spec}(A)$

- $\left(\begin{array}{c} f_P(\lambda) = 0 \text{ or } 1 \\ f_I(\lambda) = 1 \end{array} \right)$ “Dispersion-free ensemble”

- if $A = B + C$ then $f_A(\lambda) = f_B(\lambda) + f_C(\lambda)$
even if A, B, and C do not commute

The latter goes beyond traditional noncontextuality
von Neumann’s assumptions about HV models of QT

- $A \rightarrow f_A(\lambda)$ justified by noncontextuality for sharp mmts

- $f_A(\lambda) \in \text{spec}(A)$

 $\begin{cases}
 f_P(\lambda) = 0 \text{ or } 1 \\
 f_I(\lambda) = 1
 \end{cases}$ “Dispersion-free ensemble” justified by preparation noncontextuality

- if $A = B + C$ then $f_A(\lambda) = f_B(\lambda) + f_C(\lambda)$
even if A, B, and C do not commute

The latter goes beyond traditional noncontextuality
von Neumann’s assumptions about HV models of QT

- $A \rightarrow f_A(\lambda)$ justified by noncontextuality for sharp mmts
- $f_A(\lambda) \in \text{spec}(A)$
 \[\left(\begin{array}{c}
 f_P(\lambda) = 0 \text{ or } 1 \\
 f_I(\lambda) = 1
 \end{array}\right)\]
 “Dispersion-free ensemble” justified by preparation noncontextuality
- if $A = B + C$ then $f_A(\lambda) = f_B(\lambda) + f_C(\lambda)$ even if A, B, and C do not commute
 The latter goes beyond traditional noncontextuality justified by noncontextuality for unsharp mmts
\[A = B + C \]
\[A = B + C \]

\[A = \sum_a aP_a, \quad B = \sum_b bP_b, \quad C = \sum_c cP_c \]

\[\sum_a aP_a = \sum_b bP_b + \sum_c cP_c \]
\[A = B + C \]
\[A = \sum_a aP_a, \quad B = \sum_b bP_b, \quad C = \sum_c cP_c \]
\[\sum_a aP_a = \sum_b bP_b + \sum_c cP_c \]

Sort the terms by the sign of their eigenvalues
\[\sum_{a_+} a_+P_{a_+} + \sum_{b_-} b_-|P_{b_-} + \sum_{c_-} c_-|P_{c_-} = \sum_{a_-} a_-|P_{a_-} + \sum_{b_+} b_+P_{b_+} + \sum_{c_+} c_+P_{c_+} \]
\[A = B + C \]
\[A = \sum_a aP_a, \quad B = \sum_b bP_b, \quad C = \sum_c cP_c \]
\[\sum_a aP_a = \sum_b bP_b + \sum_c cP_c \]

Sort the terms by the sign of their eigenvalues
\[\sum_{a+} a_+P_{a+} + \sum_{b-} |b_-|P_{b-} + \sum_{c-} |c_-|P_{c-} = \sum_{a-} |a_-|P_{a-} + \sum_{b+} b_+P_{b+} + \sum_{c+} c_+P_{c+} \]

This defines a positive operator. Let \(r = \) maximum coefficient. Divide by \(3r \).
\[\sum_{a+} \frac{|a_+|}{3r}P_{a+} + \sum_{b-} \frac{|b_-|}{3r}P_{b-} + \sum_{c-} \frac{|c_-|}{3r}P_{c-} = \sum_{a-} \frac{|a_-|}{3r}P_{a-} + \sum_{b+} \frac{|b_+|}{3r}P_{b+} + \sum_{c+} \frac{|c_+|}{3r}P_{c+} \]

This defines an effect that can be decomposed in two ways.
\[A = B + C \]
\[A = \sum_a a P_a, \quad B = \sum_b b P_b, \quad C = \sum_c c P_c \]
\[\sum_a a P_a = \sum_b b P_b + \sum_c c P_c \]

Sort the terms by the sign of their eigenvalues
\[\sum_{a_+} a_+ P_{a_+} + \sum_{b_-} b_- P_{b_-} + \sum_{c_-} c_- P_{c_-} = \sum_{a_-} a_- P_{a_-} + \sum_{b_+} b_+ P_{b_+} + \sum_{c_+} c_+ P_{c_+} \]

This defines a positive operator. Let \(r = \) maximum coefficient. Divide by 3r.
\[\sum_{a_+} \frac{|a_+|}{3r} P_{a_+} + \sum_{b_-} \frac{|b_-|}{3r} P_{b_-} + \sum_{c_-} \frac{|c_-|}{3r} P_{c_-} = \sum_{a_-} \frac{|a_-|}{3r} P_{a_-} + \sum_{b_+} \frac{|b_+|}{3r} P_{b_+} + \sum_{c_+} \frac{|c_+|}{3r} P_{c_+} \]

This defines an effect that can be decomposed in two ways.

One can deduce that
\[\sum_{a_+} \frac{|a_+|}{3r} \chi_{a_+}(\lambda) + \sum_{b_-} \frac{|b_-|}{3r} \chi_{b_-}(\lambda) + \sum_{c_-} \frac{|c_-|}{3r} \chi_{c_-}(\lambda) = \sum_{a_-} \frac{|a_-|}{3r} \chi_{a_-}(\lambda) + \sum_{b_+} \frac{|b_+|}{3r} \chi_{b_+}(\lambda) + \sum_{c_+} \frac{|c_+|}{3r} \chi_{c_+}(\lambda) \]
probability of top branch outcome of M given preparation P

$$\frac{1}{3} \times \Pr(a_+|M_A, P) \times \frac{|a_+|}{r}$$
probability of top branch outcome of M given preparation P

\[\frac{1}{3} \times \Pr(a_+|M_A, P) \times \frac{|a_+|}{r} = \frac{1}{3} \times \Tr(P_{a_+}\rho) \times \frac{|a_+|}{r} \]
\[
\left(\frac{|a_+|}{r}, 1 - \frac{|a_+|}{r}\right)
\]

\[
\left(\frac{|b_-|}{r}, 1 - \frac{|b_-|}{r}\right)
\]

\[
\left(\frac{|c_-|}{r}, 1 - \frac{|c_-|}{r}\right)
\]

Associated effect

\[
\frac{|a_+|}{3r} P_{a_+}
\]
probability of some upward branch outcome of M given preparation P
\[
\sum \frac{|a_+|}{3r} \Pr(a_+ | M_A, P) + \sum \frac{|b_-|}{3r} \Pr(b_- | M_B, P) + \sum \frac{|c_-|}{3r} \Pr(c_- | M_C, P)
\]
\[\sum_{a_+} \frac{|a_+|}{3r} P_{a_+} + \sum_{b_-} \frac{|b_-|}{3r} P_{b_-} + \sum_{c_-} \frac{|c_-|}{3r} P_{c_-} \]

\[\sum_{a_+} \frac{|a_+|}{3r} \chi_{a_+}(\lambda) + \sum_{b_-} \frac{|b_-|}{3r} \chi_{b_-}(\lambda) + \sum_{c_-} \frac{|c_-|}{3r} \chi_{c_-}(\lambda) \]
For the outcome corresponding to some upward branch of M'

Associated effect

\[
\sum_{a_-} \frac{|a_-|}{3r} P_{a_-} + \sum_{b_+} \frac{|b_+|}{3r} P_{b_+} + \sum_{c_+} \frac{|c_+|}{3r} P_{c_+}
\]

Associated indicator function

\[
\sum_{a_-} \frac{|a_-|}{3r} \chi_{a_-}(\lambda) + \sum_{b_+} \frac{|b_+|}{3r} \chi_{b_+}(\lambda) + \sum_{c_+} \frac{|c_+|}{3r} \chi_{c_+}(\lambda)
\]
By assumption

\[\sum_{a_+} \frac{|a_+|}{3r} P_{a_+} + \sum_{b_-} \frac{|b_-|}{3r} P_{b_-} + \sum_{c_-} \frac{|c_-|}{3r} P_{c_-} = \sum_{a_-} \frac{|a_-|}{3r} P_{a_-} + \sum_{b_+} \frac{|b_+|}{3r} P_{b_+} + \sum_{c_+} \frac{|c_+|}{3r} P_{c_+} \]

Consequently, M and M' are operationally equivalent
By assumption

\[\sum_{a_+} \frac{|a_+|}{3r} P_{a_+} + \sum_{b_-} \frac{|b_-|}{3r} P_{b_-} + \sum_{c_-} \frac{|c_-|}{3r} P_{c_-} = \sum_{a_-} \frac{|a_-|}{3r} P_{a_-} + \sum_{b_+} \frac{|b_+|}{3r} P_{b_+} + \sum_{c_+} \frac{|c_+|}{3r} P_{c_+} \]

Consequently, M and M’ are operationally equivalent

But then, by noncontextuality for unsharp mmts

\[\sum_{a_+} \frac{|a_+|}{3r} \chi_{a_+}(\lambda) + \sum_{b_-} \frac{|b_-|}{3r} \chi_{b_-}(\lambda) + \sum_{c_-} \frac{|c_-|}{3r} \chi_{c_-}(\lambda) = \sum_{a_-} \frac{|a_-|}{3r} \chi_{a_-}(\lambda) + \sum_{b_+} \frac{|b_+|}{3r} \chi_{b_+}(\lambda) + \sum_{c_+} \frac{|c_+|}{3r} \chi_{c_+}(\lambda) \]
\[
\sum_{a_+} \frac{|a_+|}{3r} \chi_{a_+}(\lambda) + \sum_{b_-} \frac{|b_-|}{3r} \chi_{b_-}(\lambda) + \sum_{c_-} \frac{|c_-|}{3r} \chi_{c_-}(\lambda) = \sum_{a_-} \frac{|a_-|}{3r} \chi_{a_-}(\lambda) + \sum_{b_+} \frac{|b_+|}{3r} \chi_{b_+}(\lambda) + \sum_{c_+} \frac{|c_+|}{3r} \chi_{c_+}(\lambda)
\]
\[
\sum_{a_+} \frac{|a_+|}{3r} \chi_{a_+}(\lambda) + \sum_{b_-} \frac{|b_-|}{3r} \chi_{b_-}(\lambda) + \sum_{c_-} \frac{|c_-|}{3r} \chi_{c_-}(\lambda) = \sum_{a_-} \frac{|a_-|}{3r} \chi_{a_-}(\lambda) + \sum_{b_+} \frac{|b_+|}{3r} \chi_{b_+}(\lambda) + \sum_{c_+} \frac{|c_+|}{3r} \chi_{c_+}(\lambda)
\]

Multiplying by \(3r\) and rearranging terms, we have

\[
\sum_a a \chi_a(\lambda) = \sum_b b \chi_b(\lambda) + \sum_c c \chi_c(\lambda)
\]
\[
\sum_{a_+} \frac{|a_+|}{3r} \chi_{a_+}(\lambda) + \sum_{b_+} \frac{|b_+|}{3r} \chi_{b_+}(\lambda) + \sum_{c_+} \frac{|c_+|}{3r} \chi_{c_+}(\lambda) = \sum_{a_-} \frac{|a_-|}{3r} \chi_{a_-}(\lambda) + \sum_{b_+} \frac{|b_+|}{3r} \chi_{b_+}(\lambda) + \sum_{c_+} \frac{|c_+|}{3r} \chi_{c_+}(\lambda)
\]

Multiplying by $3r$ and rearranging terms, we have

\[
\sum_a a \chi_a(\lambda) = \sum_b b \chi_b(\lambda) + \sum_c c \chi_c(\lambda)
\]

\[
f_A(\lambda) = f_B(\lambda) + f_C(\lambda)
\]
\[\sum_{a_+} \frac{|a_+|}{3r} \chi_{a_+}(\lambda) + \sum_{b_-} \frac{|b_-|}{3r} \chi_{b_-}(\lambda) + \sum_{c_-} \frac{|c_-|}{3r} \chi_{c_-}(\lambda) = \sum_{a_-} \frac{|a_-|}{3r} \chi_{a_-}(\lambda) + \sum_{b_+} \frac{|b_+|}{3r} \chi_{b_+}(\lambda) + \sum_{c_+} \frac{|c_+|}{3r} \chi_{c_+}(\lambda) \]

Multiplying by 3r and rearranging terms, we have

\[\sum_a a \chi_a(\lambda) = \sum_b b \chi_b(\lambda) + \sum_c c \chi_c(\lambda) \]

\[f_A(\lambda) = f_B(\lambda) + f_C(\lambda) \]

So we have rededived von Neumann's assumption!
Can we just verify that \(A = B + C \) rather than the implementing the two measurements just described?
Can we just verify that $A=B+C$ rather than the implementing the two measurements just described?

Yes.
The empirical content of $M \sim M'$ is that

$$
\sum_{a_+} \frac{|a_+|}{3r} \Pr(a_+|M_A, P) + \sum_{b_-} \frac{|b_-|}{3r} \Pr(b_-|M_B, P) + \sum_{c_-} \frac{|c_-|}{3r} \Pr(c_-|M_C, P)
$$

$$
= \sum_{a_-} \frac{|a_-|}{3r} \Pr(a_-|M_A, P) + \sum_{b_+} \frac{|b_+|}{3r} \Pr(b_+|M_B, P) + \sum_{c_+} \frac{|c_+|}{3r} \Pr(c_+|M_C, P)
$$

for all preparations P.
But by noncontextuality, the rolling of the dice cannot be important

Instead, just determine \(\Pr(a|M_A, P), \Pr(b|M_B, P), \Pr(c|M_C, P) \ \forall P \)

Then numerically verify that

\[
\sum_{a_+} \frac{|a_+|}{3r} \Pr(a_+|M_A, P) + \sum_{b_-} \frac{|b_-|}{3r} \Pr(b_-|M_B, P) + \sum_{c_-} \frac{|c_-|}{3r} \Pr(c_-|M_C, P) \\
= \sum_{a_-} \frac{|a_-|}{3r} \Pr(a_-|M_A, P) + \sum_{b_+} \frac{|b_+|}{3r} \Pr(b_+|M_B, P) + \sum_{c_+} \frac{|c_+|}{3r} \Pr(c_+|M_C, P)
\]

for all preparations \(P \).
But this is equivalent to numerically verifying that

\[\sum_a a \Pr(a|M_A, P) = \sum_b b \Pr(b|M_B, P) + \sum_c c \Pr(c|M_C, P) \quad \forall P \]

which is precisely the empirical content of

\[A = B + C \]
Faster proof:

Lemma: Any function \(g \) over positive operators satisfying

\[
g\left(\sum_k r_k E_k\right) = \sum_k r_k g(E_k)
\]

where \(r_k \geq 0 \), can be extended uniquely to a linear function over the Hermitian operators

\[
g\left(\sum_j a_j A_j\right) = \sum_j a_j g(A_j)
\]

where the \(a_j \) are real.

Noncontextuality for preparations and measurements \[\rightarrow\] von Neumann's assumptions
Were von Neumann’s assumptions “silly”?

Mermin on von Neumann:
"...to require that $v(A+B)=v(A)+v(B)$ in each individual system of the ensemble is to ensure that a relation holds in the mean by imposing it case by case — a sufficient, but hardly a necessary condition. Silly!"
Were von Neumann’s assumptions “silly”?

Mermin on von Neumann:
"...to require that \(v(A+B) = v(A) + v(B) \) in each individual system of the ensemble is to ensure that a relation holds in the mean by imposing it case by case --- a sufficient, but hardly a necessary condition. Silly!"

Mermin on Bell-Kochen-Specker:
"If we do the experiment to measure A with B,C,... on an ensemble of systems prepared in the state and ignore the results of the other observables, we get exactly the same statistics for A as we would have obtained had we instead done the quite different experiment to measure A with L,M,... on that same ensemble. The obvious way to account for this, particularly when entertaining the possibility of a hidden-variables theory, is to propose that both experiments reveal a set of values for A in the individual systems that is the same, regardless of which experiment we choose to extract them from."
Were von Neumann's assumptions “silly”?

Mermin on von Neumann:
"...to require that $\nu(A+B) = \nu(A) + \nu(B)$ in each individual system of the ensemble is to ensure that a relation holds in the mean by imposing it case by case --- a sufficient, but hardly a necessary condition. Silly!"

Mermin on Bell-Kochen-Specker:
"If we do the experiment to measure A with $B,C,...$ on an ensemble of systems prepared in the state and ignore the results of the other observables, we get exactly the same statistics for A as we would have obtained had we instead done the quite different experiment to measure A with $L,M,...$ on that same ensemble. The obvious way to account for this, particularly when entertaining the possibility of a hidden-variables theory, is to propose that both experiments reveal a set of values for A in the individual systems that is the same, regardless of which experiment we choose to extract them from."

The obvious way is not the only way -- it is a sufficient but not a necessary condition.
Either both proofs are silly or neither is!
More variants of von Neumann’s no-go theorem

Schrödinger’s example

\[\vec{L} = \vec{R} \times \vec{P} \]

\[\vec{L}(\lambda) = \vec{R}(\lambda) \times \vec{P}(\lambda) \]
More variants of von Neumann’s no-go theorem

Schrödinger’s example

\[\vec{L} = \vec{R} \times \vec{P} \]
\[\vec{L}(\lambda) = \vec{R}(\lambda) \times \vec{P}(\lambda) \]

The tunneling example

\[H = \frac{p^2}{2m} + V(X) \]
\[H(\lambda) = \frac{p(\lambda)^2}{2m} + V(X(\lambda)) \]
Conclusions

The notion of noncontextuality should be separated from that of outcome determinism
Conclusions

The notion of noncontextuality should be separated from that of outcome determinism.

It can be extended to preparations and unsharp measurements.
Conclusions

The notion of noncontextuality should be separated from that of outcome determinism.

It can be extended to preparations and unsharp measurements.

It can be made operational and thus subject to experimental test.
Conclusions

The notion of noncontextuality should be separated from that of outcome determinism.

It can be extended to preparations and unsharp measurements.

It can be made operational and thus subject to experimental test.

Most notions of nonclassicality can be understood as either:
- The result of an epistemic restriction
- An instance of the generalized notion of contextuality
\[p(m \mid 100) + p(m \mid 11) = p(m \mid 01) + p(m \mid 10) \]

Diagram:
- Variables: \(x_0, x_1, y, b \)
- Relationship: \(b = y \)
- Circle with points labeled: 00, 01, 0, 1, 0, 85
\[p(m100) + p(m1\overline{11}) = p(m101) + p(m1\overline{10}) \]

\[b = x \]

\[P_{\overline{0}0}, P_{\overline{0}1}, P_{10}, P_{11} \]
\[p(m|100) + p(m|111) = p(m|01) + p(m|11) \]

\[b = x \cdot y \]

\[P_{00}, P_{01}, P_{10}, P_{11} \]

\[P(c|1P_{00}), P(c|1P_{11}) = \]

\[p(c|1P_{01}), P(c|1P_{10}) = \]
\[p(m|00) + p(m|11) = p(m|01) + p(m|10) \]

\[b = x \cdot y \]

\[P_{00}, P_{01}, P_{10}, P_{11}, \]

\[P_c(k|P_{00}) \cdot P_c(k|P_{11}) = \]

\[P_c(k|P_{00}) \cdot P_c(k|P_{00}) = \]