Revenge of the S-Matrix

or

What is the simplest QFT?

N.A.-H.

with Jared Kaplan

+ in progress with Freddy Cachazo
Biggest Crises/Opportunity in fundamental physics:

- The Landscape
- Vacuum Selection
- Fundamental issues of QM, Gravity, Cosmology

MUST BE DEALT WITH.
Biggest Crises/Opportunity
in fundamental physics:

- The Landscape
- Vacuum Selection
- Fundamental issues of
 - QM
 - Gravity
 - Cosmology

MUST BE DEALT WITH.
Something goes wrong with locality + gravity, not just @ LPL.

Information Paradox

Infinities in eternal inflation.

Can we talk about local things?
E.g. infalling observer into BH.

In cosmology, we are like those guys!

Local physics \rightarrow Flat Space
Can we talk about ordinary QFT in a different way, not manifest local?

Analogy:

\[m \dot{x} = -V'(x) \quad \text{manifest deterministic} \]

\[S[A, B] \text{ extremized not manifest: det.} \rightarrow \text{better jumping eff point to QM} \]
2000's "top down" attempt: Witten's
twistor formulation of SYM

\[\text{boundary theory for flat space.} \]

CSW recursion relations

Very special to 4D, MHV amp.
play special role, related to \(F = \pm i \tilde{F} \)
solutions of \(\mathcal{T} \).

\[\text{led to BCF-W recursion relations, which can be described from "bottom up", and are much more general.} \]
BCFW Redux

Complexify 2 momenta p_j,k, keeping them on shell:

$$p_j' = p_j + q' \cdot z = p_j(z)$$

$$p_k' = p_k - q' \cdot z = p_k(z)$$

$$0 = p_j^2(z) \Rightarrow q \cdot p_j = 0, \quad q^2 = 0$$
\(q^2 = 0, \quad q \cdot p_i^k = 0 \)

\[
p_j = (1, \pm 1, 0, 0, 0, \ldots 0), \quad q = \frac{1}{\sqrt{2}} (0, 0, 1, i, 0, \ldots, 0)
\]

[Or keep momenta real, \((D-2, 2)\) sig.]

Pol vectors:

\(z = 0: \quad E_j^- = E_k^+ = q, \quad E_j^+ = E_k^- = \overline{q}, \quad E_T = (0, 0, 0, 0; \ldots 1) \)

\(E_j^- (z) = E_k^+ (z) = q, \quad E_T (z) = (0, 0, 0, 0; \ldots 1) \)

\(E_j^+ (z) = \overline{q} - z p_k, \quad E_k^- = \overline{q} + z p_j \)

[\[P_j^k \quad E_j^k (z) = 0, \quad E_j^- E_j^+ = E_k^- E_k^+ = 1, \ldots \]]

\(M(p_i, h_i) \rightarrow M^{h_j h_k} (z) \)
$M(z)$: only simple poles

\[P_j(z) = \begin{cases} P_j^2 & j,k \in \mathbb{Z} \\ P_j + 2q & j \in \mathbb{Z} \\ P_j - 2q & k \in \mathbb{Z} \end{cases} \]

\[P_j^2(z) = P_j^2 + 2P_j \cdot q \cdot z \text{, poles at } z \to z_j = -\frac{P_j^2}{2P_j \cdot q} \]

\[\text{res } M(z \to z_j) = \sum_{h} \left(\begin{array}{c} j \\ h \end{array} \right) \times \left(\begin{array}{c} -h \\ k \end{array} \right) \text{ amp} \]
If \(M(z \to \infty) \to 0 \),

\[
0 = \frac{1}{2\pi i} \int \frac{dz}{z} M(z) = M(0) + \text{other res.}
\]

\[\downarrow \]

\[
\sum_{j, h} \frac{1}{P_i^2 - \frac{1}{P_j^2}}
\]

On-shell BCFW recursion relations.

[Sufficient \(M^{-\text{any}}(z \to \infty) \to 0 \text{ Gauge} \)]

[Sufficient \(M^{-\text{any}}(z \to \infty) \to 0 \text{ Univ} \)]
Can recursively reduce all amplitudes to

\[1 \rightarrow 3 \]

which normally can't be on-shell, but can be for complex momenta (or in (D-2, 2) signature).
Remarkable Object [Casas, Benincasa]

Completely determined by Lorentz Invariance.

In 4D, $P_{\alpha i} = 2\alpha\bar{\tau}_i$,

$\mathcal{M}_{123} = \frac{s_1 + s_2 - s_3}{2} \left\langle 23 \right\rangle^2 \left\langle 31 \right\rangle^2$

$+$ \begin{array}{c}
1 \\
2 \\
3 \\
\end{array}

$+$ \begin{array}{c}
2 \\
3 \\
\end{array}

$\frac{4}{3} \cdot \frac{1}{2} - c_3$

Spin 4

$f_{abc} \left\langle 12 \right\rangle \left\langle 23 \right\rangle$

$\left[\frac{\left\langle 12 \right\rangle^3}{\left\langle 13 \right\rangle^2 \left\langle 23 \right\rangle} \right]^2$

Spin 2
Behavior of $M(z \to \infty)$ is surprising

Naively, $M(z \to \infty) \to 0$ is never true! e.g. ϕ^4-theory

$M_{\phi^4}(z) \to z^0$

Gauge / Gravity is worse!

Then fold in ε's, $\to z^0 \text{ or } z^1 ...$
<table>
<thead>
<tr>
<th>Gauge</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>(\mathbb{Z})</td>
</tr>
<tr>
<td>---/++</td>
<td>(\mathbb{Z}^2)</td>
</tr>
<tr>
<td>++</td>
<td>(\mathbb{Z}^3)</td>
</tr>
<tr>
<td>Grow.</td>
<td></td>
</tr>
<tr>
<td>---++</td>
<td>(\mathbb{Z}^{n-1})</td>
</tr>
<tr>
<td>:</td>
<td></td>
</tr>
<tr>
<td>++,--</td>
<td>(\mathbb{Z}^{n+3})</td>
</tr>
</tbody>
</table>
Gauge N = ve

\[
\begin{align*}
-+ & \rightarrow \mathbb{Z} \\
--+ & \rightarrow \mathbb{Z}^2 \\
+ - & \rightarrow \mathbb{Z}^3
\end{align*}
\]

Gauge

\[
\begin{align*}
-++ & \rightarrow \mathbb{Z}^{n-1} \\
+ - & \rightarrow \mathbb{Z}^{n+3}
\end{align*}
\]

Unexpectedly good behavior of \(M(2 \to 3\alpha) \) encapsulates heavy cancellations in explicit diagram calculations.
Understanding $M(z \to \infty)$

$$P_{k\ell} = (z) = P_{k\ell} \pm z q$$

$z \to \infty$: hard (complex) light-like particle blasting through soft background. Familiar for real momenta (eikonal). "Not much" scattering, "helicity concerned". We'll formalize and extend to future research.
Yang–Mills

\[A_\mu = A_\mu + q_\mu. \quad \text{Usual} \quad g_\mu \quad \text{G-Fixing} \]

\[Z = -\frac{1}{4} \text{tr} D_\mu a_a D_\nu a_b \eta^{ab} \]
\[+ \frac{i}{2} \text{tr} [a_a, a_b] F_{ab} \]

\[\rightarrow \infty : \quad \text{"Spin Lorentz invariance".} \]

\[M^{ab} = (c\xi + \ldots) \eta^{ab} + A^{ab} + \frac{1}{2} \mathcal{B}^{ab} + \ldots \]

Also Ward id.: \[P^a \mathcal{E}_a M^{ab} \mathcal{E}_b = 0 \]

\[\Rightarrow q \quad a_b \quad \mathcal{E}_b \quad \mathcal{E}_b \quad \mathcal{E}_b \]
Pure Gravity

\[Z = \sqrt{g} \left[\frac{1}{4} g^{\mu \nu} g_{\rho \sigma} V_{\mu} h_{\rho \sigma} V_{\nu} h_{\rho \sigma} - \frac{i}{2} h_{\rho \sigma} h_{\mu \nu} R^{\rho \mu \sigma \nu} \right] \]

(Bern-Grant trick used).

L, R h_{\rho \sigma} indices separately contracted.

\[\Rightarrow 2 \text{ copies of spin L.I.} \]

\[h_{\mu \nu} = e^a_{\mu} \tilde{e}^\alpha_{\nu} h_a \tilde{\alpha} \]

Gauge \[\omega^+_a b = \tilde{\omega}^+_a \tilde{b} = 0 \]
What is simplest QFT?

$\phi^4 \rightarrow YM \rightarrow \text{Gravity}$

$N=4 \text{ SYM} \downarrow \quad N=8 \text{ SUGRA}$
Why? We've seen that amps of \(s \geq 1 \) particles are much nicer than scalars. But: **fundamentally discrete** objects. YM

\[M \quad 1 \]

Graw 1

\[+2 \quad + \frac{3}{2} \quad + \frac{1}{2} \quad 0 \quad + \frac{1}{2} \quad - \frac{1}{2} \quad - \frac{1}{2} \quad - \frac{3}{2} \quad -2 \]
Label states of man. \((\vec{a}, \vec{\alpha}) \):

\[
|\eta\rangle = e^{-iQ} |\eta\rangle \quad \Rightarrow \quad \langle \omega | \langle \omega \rangle = 1
\]

\[
|\eta\rangle = e^{-iQ} \quad \Rightarrow \quad |\eta\rangle = e^{-iQ} |\eta\rangle \quad \langle \omega | \langle \omega \rangle = 1
\]

\[
Q_{\alpha I} |\eta\rangle = \alpha_{\alpha I} |\eta\rangle \quad Q_{\alpha I} |\tilde{\eta}\rangle = \tilde{\alpha}_{\alpha I} |\tilde{\eta}\rangle
\]

\[
|\eta\rangle \leftrightarrow |\bar{\eta}\rangle \quad \text{Complementary}
\]

\[
|\alpha\rangle \quad \text{MHV} \leftrightarrow \text{MHV} \quad \text{Complementary}
\]
Label states of $\eta (\tilde{\eta}, \tilde{\eta})$:

$$|\eta\rangle = e^{-} |\tilde{\eta}\rangle$$

or

$$|\tilde{\eta}\rangle = e^{+} |\eta\rangle$$

$$Q_{\tilde{\eta}} |\eta\rangle = \lambda_{\tilde{\eta}} |\eta\rangle$$

$$Q_{\tilde{\eta}} |\tilde{\eta}\rangle = \lambda_{\tilde{\eta}} |\tilde{\eta}\rangle$$

$$|\eta\rangle \rightarrow |\tilde{\eta}\rangle \text{ Complementary}$$

$$\eta \leftrightarrow \tilde{\eta} \text{ Complementary}$$
Using (trivially) SUSY, can show

Remarkable: SUSY transmits good properties of gravity amplitudes to lower-spin (e.g. scalar) amplitudes.
Fundamental Q:

What is the dual theory (weak-weak!) that explains these amazing properties? Should exist + be nicest for $N=4$, $N=8$. But since BCFW is true in any D, it shouldn't crucially rely on 4D.

To start with: is there an analog of twistor string theory that makes BCFW "obvious"?