Abstract: If the spontaneous breaking of Peccei-Quinn symmetry comes from soft supersymmetry breaking, the fermionic partners of the symmetry-breaking fields have mass of order the gravitino mass, and are called flatinos. The lightest flatino, called here the flaxino, is a CDM candidate if it is the lightest supersymmetric particle. We here explore flaxino dark matter assuming that the lightest ordinary supersymmetric particle is the stau, with gravity-mediated supersymmetry breaking. The decay of the stau to the flaxino is fast enough not to spoil the standard predictions of Big Bang Nucleosynthesis, and its track and decay can be seen in future colliders.
Flaxino dark matter and stau decay

Kazunori Kohri

Physics Department, Lancaster University

Kohri, Takayama, PRD (2007)

Chun, Kim, Kohri and Lyth, JHEP (2008)

Introduction of SUSY

Supersymmetry (SUSY)

- Solving “Hierarchy Problem”
- Realizing “Coupling constant unification in GUT”

Fermion ↔ Boson

- quark ↔ squark
- lepton ↔ slepton
- photino ↔ photon
- gravitino ↔ graviton
- neutralino

axino ↔ axion
Realistic candidates of particle dark matter:

- **Neutralino** $\chi \sim 100\%$ Bino or photino
 Most famous Lightest Supersymmetric Particle (LSP) with $m_\chi \sim 100\text{GeV}$ (appears even in global SUSY)

- **Gravitino** ψ_μ
 super partner of graviton with spin $3/2$ and $m_{3/2} \lesssim 100\text{GeV}$ (massive only in local SUSY)
Realistic candidates of particle DM II

- Axion α
 solving strong CP problem, $m_\alpha \sim 10^{-5}$eV (10^{11}GeV/F_α)

$$L_{PQ} \sim \theta_{QCD} F_{\mu\nu}^a \tilde{F}_\mu^\nu_a$$

$$\theta_{QCD} \sim \frac{\alpha}{F_\alpha} < 10^{-9}$$

- Axino $\tilde{\alpha}$
 super partner of axion

- "Flaxino" (Lightest flatino)
 Superposition of axinos in DFSZ models
Upper bound on reheating temperature

Kawasaki, Kohri, Moro, Yotsuyanagi (08)

gravitino “NLSP” and neutralino LSP

Hadronic decay

\[B_n \leq O(1) \quad (B_\gamma \leq O(1)) \]

\[T_R \leq 10^7 \text{GeV} \left(\frac{Y_{3/2}}{10^{-14}} \right) \]

\[m_{3/2} \leq 10^3 \text{GeV} \left(\frac{\tau_{3/2}}{4 \times 10^5 \text{ sec}} \right)^{-1/3} \]
Long-lived NLSP can be scalar tau lepton (stau)?

Steffen (2006)
Kawasaki, Kohri, Moroi, Yotsuyanagi (2008)
Long-lived NLSP can be scalar tau lepton (stau)?

Steffen (2006)

Kawasaki, Kohri, Moroi, Yotsuyanagi (2008)

Gravitino NLSP and neutralino LSP scenario needs very low reheating temperature after inflation (\(T_R < 10^6 \text{ GeV} \))
Long-lived NLSP can be scalar tau lepton (stau)?

Steffen (2006)

Kawasaki, Kohri, Moroi, Yotsuyanagi (2008)

Gravitino NLSP and neutralino LSP scenario needs very low reheating temperature after inflation ($T_R < 10^6 \text{ GeV}$)

Relic neutralino NLSP ($m_\chi \ll \text{ TeV}$) and its daughter gravitino SP DM scenario might be disfavored by BBN (w/o tuned T_R to fit Ω_{CDM} or for $m_\chi > 2 \text{ TeV}$).
Long-lived NLSP can be scalar tau lepton (stau)?

Steffen (2006)
Kawasaki, Kohri, Moroi, Yotsuyanagi (2008)

Gravitino NLSP and neutralino LSP scenario needs very low reheating temperature after inflation ($T_R < 10^6$ GeV)

Relic neutralino NLSP ($m_\chi < \text{TeV}$) and its daughter gravitino SP DM scenario might be disfavored by BBN (w/o tuned T_R to fit Ω_{CDM} or for $m_\chi > 2\text{TeV}$)

Slepton NLSP should be attractive!!!

See also Frank Steffen’s and Joesef Pladler’s talks in preceding workshop
Long-lived NLSP can be scalar tau lepton (stau)?

Steffen (2006)

Kawasaki, Kohri, Moroi, Yotsuyanagi (2008)

Gravitino NLSP and neutralino LSP scenario needs very low reheating temperature after inflation ($T_R < 10^6$ GeV)

Relic neutralino NLSP ($m_\chi \ll$ TeV) and its daughter gravitino SP DM scenario might be disfavored by BBN (w/o tuned T_R to fit Ω_{CDM} or for $m_\chi > 2$ TeV)

Slepton NLSP should be attractive!!!

See also Frank Steffen’s and Joezef Pladler’s talks in preceding workshop

Then, LSP would be gravitino or axino / flexino (flatino)
CHArged Massive Particle (CHAMP)

Kohri and Takayama, hep-ph/0605243
See also literature, Cahn-Glashow ('81)
CHArged Massive Particle (CHAMP)

Kohri and Takayama, hep-ph/0605243
See also literature, Cahn-Glashow ('81)

Candidates of long-lived CHAMP in modern cosmology
stau, selectron ...
CHArged Massive Particle (CHAMP)

Kohri and Takayama, hep-ph/0605243
See also literature, Cahn-Glashow ('81)

Candidates of long-lived CHAMP in modern cosmology
stau, selectron ...

“CHAMP recombination” with light elements

\[T_c \sim \frac{E_{\text{bin}}}{40} \sim 10\text{keV} \]
\[(E_{\text{bin}} \sim \alpha^2 m_i \sim 100\text{keV}) \]
CHArged Massive Particle (CHAMP)

Kohri and Takayama, hep-ph/0605243
See also literature, Cahn-Glashow ('81)

Candidates of long-lived CHAMP in modern cosmology
stau, selectron ...

“CHAMP recombination” with light elements

$T_c \sim E_{\text{bin}}/40 \sim 10\text{keV}$
$(E_{\text{bin}} \sim a^2 m_i \sim 100\text{keV})$

CHAMP captured-nuclei, e.g., $(C,^4\text{He})$ changes the nuclear reaction rates dramatically in BBN
He4 bound-state ratio
Catalyzed BBN

- CHAMP bound state with ^4He enhances the rate

$$D + (^4\text{He}, C^-) \rightarrow ^6\text{Li} + C^-$$

Catalysis BBN is in crisis III
Catalyzed BBN

• CHAMP bound state with \(^4\text{He}\) enhances the rate

\[
D + (\ ^4\text{He}, \text{C}^-) \rightarrow \ ^6\text{Li} + \text{C}^-
\]

• Enhancement of cross section

Catalysis BBN is in crisis III
Catalyzed BBN

- CHAMP bound state with 4He enhances the rate

$$D + (^4\text{He}, C^-) \rightarrow ^6\text{Li} + C^-$$

- Enhancement of cross section

$$\sim \left(\frac{\lambda_\gamma}{a_{\text{Bohr}}} \right)^5 \sim (30)^5 \sim 10^{7-8}$$

Confirmed by Hamaguchi et al (07), hep-ph/0702274

Catalysis BBN is in crisis III
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Lifetime

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP
Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)
BBN in stau NLSP and gravitino LSP
Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP
Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP
Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (>1000 sec)
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (>1000 sec)
BBN in stau NLSP and gravitino LSP Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (>1000 sec)
BBN in stau NLSP and gravitino LSP
Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (>1000 sec)
BBN in stau NLSP and gravitino LSP
Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (> 1000 sec)
BBN in stau NLSP and gravitino LSP
Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuyanagi (08)

Difficulties in CBBN for long lifetime (>1000 sec)
BBN in stau NLSP and gravitino LSP
Scenario in gauge mediation

Steffen (06)
Kawasaki, Kohri, Moroi, Yotsuya (08)

Difficulties in CBBN for long lifetime (>1000 sec)
Any other possibilities? 2

- Sneutrino NLSP and gravitino LSP
 Kanzaki, Kawasaki, Kohri, Moroi (07)

 BBN constraints are much milder!

 We may still need a fine tuning for T_R to get $\Omega_{\psi_\mu} = \Omega_{\text{CDM}}$

- R-parity violation in gravitino LSP?
 Takayama, Yamaguchi (00)
 Buchmuller, Covi, Hamaguchi, Ibarra, Yanagida (07)
 Ibarra and Tran (08); Ishiwata, Matsumoto, Moroi (08)

NLSP lifetime can be much shorter!

Many astrophysical uncertainties to fit data...
Any other possibilities? 2

• Sneutrino NLSP and gravitino LSP

 Kanzaki, Kawasaki, Kohri, Moroi (07)

 BBN constraints are much milder!

 We may still need a fine tuning for T_R to get $\Omega_{\psi_\mu} = \Omega_{CDM}$

• R-parity violation in gravitino LSP?

 Takayama, Yamaguchi (00)
 Buchmuller, Covi, Hamaguchi, Ibarra, Yanagida (07)
 Ibarra and Tran (08); Ishiwata, Matsumoto, Moroi (08)

NLSP lifetime can be much shorter!

Many astrophysical uncertainties to fit data.
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY breaking

Murayama, Suzuki, Yanagida (92)

\[
W = \frac{1}{4} \sqrt{\lambda} P Q^3 / M_G + h \frac{P Q}{M_G} H_1 H_2
\]

\[
V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2
\]

\[
+ \text{Re} \left(A \sqrt{\lambda} P Q^3 / M_G \right)
\]

\[
+ A_h h (P Q / M_G) H_1 H_2 + c.c.
\]
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY beaking

Murayama, Suzuki, Yanagida (92)

\[
W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{PQ}{M_G} H_1 H_2
\]

\[
V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2
\]

\[
+ \text{Re} \left(A \sqrt{\lambda} PQ^3 / M_G \right)
\]

\[
+ A h \left(PQ / M_G \right) H_1 H_2 + \text{c.c.}
\]
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravitiy mediation in SUSY beaking

Murayama, Suzuki, Yanagida (92)

\[
W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{PQ}{M_G} H_1 H_2
\]

\[
V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2
\]
\[
+ \text{Re} \left(A \lambda \sqrt{\lambda} PQ^3 / M_G \right)
\]
\[
+A_h h \left(PQ / M_G \right) H_1 H_2 + \text{c.c.}
\]
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation
Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY breaking
Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} P Q^3 / M_G + h \frac{P Q}{M_G} H_1 H_2 \]

\[V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]
\[+ \text{Re} \left(A_\lambda \sqrt{\lambda} P Q^3 / M_G \right) \]
\[+ A_h h (P Q / M_G) H_1 H_2 + c.c. \]
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation
Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravitiy mediation in SUSY beaking
Murayama, Suzuki, Yanagida (92)

\[
W = \frac{1}{4} \sqrt{\lambda} P Q^3 / M_G + h \frac{P Q}{M_G} H_1 H_2
\]

\[
V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2
\]

\[
+ \text{Re} \left(A \sqrt{\lambda} P Q^3 / M_G \right)
\]

\[
+A_h h \left(P Q / M_G \right) H_1 H_2 + c.c.
\]

P is called "flaton" (K. Yamamoto 1985)
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY beaking

Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{PQ}{M_G} H_1 H_2 \]

\[V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]

\[+ \text{Re} \left(A_\lambda \sqrt{\lambda} PQ^3 / M_G \right) \]

\[+ A_h h (PQ / M_G) H_1 H_2 + \text{c.c.} \]

P is called "flaton"

(K. Yamamato 1985)

Thermal Inflation (mini inflaton), \(N \sim O(10), T_R \sim O(10) \) GeV

for dilution of dangerous relics such as moduli, dilatons, polonyi, etc.
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY beaking

Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{PQ}{M_G} H_1 H_2 \]

\[V \geq \lambda (|P|^6 + 9|P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]

\[+ \text{Re} \left(A \sqrt{\lambda} PQ^3 / M_G \right) \]

\[+ A_h h \left(PQ / M_G \right) H_1 H_2 + c.c. \]

P is called "flaton" (K. Yamamamoto 1985)

Thermal Inflation (mini inflaton), N \sim O(10), T_R \sim O(10) \text{ GeV}

for dilution of dangerous relics such as moduli, dilatons, polonyi etc.
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation
Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY breaking
Murayama, Suzuki, Yanagida (92)

\[
W = \frac{1}{4} \sqrt{\lambda} \frac{PQ^3}{M_G} + h \frac{PQ}{M_G} H_1 H_2
\]

\[
V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2
\]

\[+ \text{Re} \left(A \sqrt{\lambda} \frac{PQ^3}{M_G} \right)\]

\[+ A_h h \left(\frac{PQ}{M_G} \right) H_1 H_2 + \text{c.c.} \]

Thermal Inflation (mini inflaton), \(N \sim O(10), T_R \sim O(10) \) GeV

for dilution of dangerous relics such as moduli, dilatons, polonyi, etc.

\(P \) is called "flaton" (K. Yamamoto 1985)
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY breaking

Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} P Q^3 / M_G + h \frac{P Q}{M_G} H_1 H_2 \]

\[V \gg \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]

\[+ \text{Re} \left(A \sqrt{\lambda} P Q^3 / M_G \right) \]

\[+ A_h h \left(PQ / M_G \right) H_1 H_2 + \text{c.c.} \]

Thermal Inflation (mini inflaton), \(N \sim O(10), T_R \sim O(10) \text{ GeV} \)

for dilution of dangerous relics such as moduli, dilatons, polonyi, etc.

P is called "flaton" (K. Yamamoto 1985)
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY breaking

Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{PQ}{M_G} H_1 H_2 \]

\[V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 + \text{Re} \left(A_\lambda \sqrt{\lambda} PQ^3 / M_G \right) \]

\[+ A_h h \left(PQ / M_G \right) H_1 H_2 + \text{c.c.} \]

Thermal Inflation (mini inflaton), \(N \sim O(10), T_R \sim O(10) \text{ GeV} \)

for dilution of dangerous relics such as moduli, dilatons, polonyi, etc.

P is called "flaton" (K. Yamamoto 1985)
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY breaking

Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{PQ}{M_G} H_1 H_2 \]

\[V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]

\[+ \text{Re} \left(A \sqrt{\lambda} PQ^3 / M_G \right) \]

\[+ A_h h \left(\frac{PQ}{M_G} \right) H_1 H_2 + \text{c.c.} \]

Thermal Inflation (mini inflaton), \(N \sim O(10), T_R \sim O(10) \) GeV

for dilution of dangerous relics such as moduli, dilatons, polonyi, etc.

P is called "flaton" (K. Yamamoto 1985)
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY beaking

Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{PQ}{M_G} H_1 H_2 \]

P is called "flaton" (K. Yamamoto 1985)

\[V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]

\[+ \text{Re} \left(A_\lambda \sqrt{\lambda} PQ^3 / M_G \right) \]

\[+ A_h h (PQ / M_G) H_1 H_2 + c.c. \]

Thermal Inflation (mini inflaton), \(N \sim O(10), T_R \sim O(10) \) GeV

for dilution of dangerous relics such as moduli, dilatons, polonyi etc.
Soft(er) potential, gravity mediation in SUSY breaking

\[W = \frac{1}{4} \sqrt{\lambda} P Q^3 / M_G + h \frac{PQ}{M_G} H_1 H_2 \]

\[V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]

\[+ \text{Re} \left(A_\lambda \sqrt{\lambda} P Q^3 / M_G \right) \]

\[+ A_h h \left(\frac{PQ}{M_G} \right) H_1 H_2 + \text{c.c.} \]

Thermal Inflation (mini inflaton), \(N \sim O(10), T_R \sim O(10) \) GeV

for dilution of dangerous relics such as moduli, dilatons, polonyi etc.
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation
Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY beaking
Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{PQ}{M_G} H_1 H_2 \]

\[V \supset \lambda (|P|^6 + 9 |P|^4 |Q|^2) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]

+ \text{Re} \left(A_\lambda \sqrt{\lambda} PQ^3 / M_G \right)

+ A_h \text{Re} \left(PQ / M_G \right) H_1 H_2 + c.c.

Thermal Inflation (mini inflaton), \(N \sim O(10), T_R \sim O(10) \text{ GeV} \)

for dilution of dangerous relics such as moduli, dilatons, polonyi, etc.
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ axion models in Gravity Mediation

Chun, Kim, Kohri, and Lyth (08)

Soft(er) potential, gravity mediation in SUSY breaking

Murayama, Suzuki, Yanagida (92)

\[W = \frac{1}{4} \sqrt{\lambda} PQ^3 / M_G + h \frac{P Q}{M_G} H_1 H_2 \]

\[V \supset \lambda \left(|P|^6 + 9 |P|^4 |Q|^2 \right) / M_G^2 - m_P^2 |P|^2 + m_Q^2 |Q|^2 \]

\[+ \text{Re} \left(A \sqrt{\lambda} PQ^3 / M_G \right) \]

\[+ A_h h \left(PQ / M_G \right) H_1 H_2 + \text{c.c.} \]

P is called "flaton" (K. Yamamoto 1985)

Thermal Inflation (mini inflaton), N \sim O(10), T_R \sim O(10) \text{ GeV}

for dilution of dangerous relics such as moduli, dilatons, polonyi, etc.
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ models in Gravity Mediation

Stau NLSP and axino/flatino/“flaxino” LSP in DFSZ models in Gravity Mediation

Decaying “flatons” after thermal inflation, reheats the universe and produce staus

Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ models in Gravity Mediation

Decaying "flatons" after thermal inflation, reheats the universe and produce staus

\[T_R \sim O(10) \text{ GeV} \]

Lifetime of stau is very short due to milder suppression (\(\propto F_a^{-1/2} \)), and tree level couplings in DFSZ

\[10^{-8} \text{ sec} \lesssim \tau_{\tilde{\tau}} \lesssim 10^{-2} \text{ sec} \]
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ models in Gravity Mediation

Naturally μ-term is produced
Spontaneously broken PQ symmetry

$$\sqrt{\langle P \rangle^2 + 9 \langle Q \rangle^2} \equiv F_a \approx \sqrt{M_G m} \approx 10^{10} \text{ GeV}$$

$$m_a \approx 0 \quad m_P \approx m_Q \quad \square 100 \text{ GeV}$$

Scaler masses (axion and 3 flaxions)

$$m_{F_1} \approx m_{F_2} \approx m_{F'} \approx 100 \text{ GeV}$$

Fermion masses (2 flaxinos)

$$m_{\tilde{F}} \approx m_{\tilde{F'}} \approx 100 \text{ GeV}$$
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ models in Gravity Mediation

Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ models in Gravity Mediation

Decaying "flatons" after thermal inflation, reheats the universe and produce staus

Stau NLSP and axino/flatino/“flaxino” LSP in DFSZ models in Gravity Mediation

Decaying “flatons” after thermal inflation, reheats the universe and produce staus

$$ T_R \sim O(10) \text{ GeV} $$
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ models in Gravity Mediation

Decaying "flatons" after thermal inflation, reheats the universe and produce staus

\[T_R \sim O(10) \text{ GeV} \]

Lifetime of stau is very short due to milder suppression \((\alpha F_a^{-1}) \), and tree level couplings in DFSZ

\[10^{-8} \text{ sec} \lesssim \tau_\tilde{\tau} \lesssim 10^{-2} \text{ sec} \]
Stau NLSP and axino/flatino/"flaxino" LSP in DFSZ models in Gravity Mediation

Decaying "flatons" after thermal inflation, reheats the universe and produce staus

\[T_R \sim \mathcal{O}(10) \text{ GeV} \]

Lifetime of stau is very short due to milder suppression \((\alpha F_a) \), and tree level couplings in DFSZ

\[10^{-8} \text{ sec} \leq \tau_{\tilde{\tau}} \leq 10^{-2} \text{ sec} \]

No BBN Catalysis

Stau can be found in LHC!!!
Large Hadron Collider (LHC) will start this year
Large Hadron Collider (LHC) will start this year.
Large Hadron Collider (LHC) will start this year

10m
\sim 10^{-7}\text{sec}

ATLAS detector in CERN, Geneva, Switzerland
(March 2007)
Place another stopper near ATLAS or CMS to stop long-lived charged SUSY particles (even for $cT > 10$ m)

- 5 m Iron wall (Hamaguchi, Kuno, Nakaya, and Nojiri (04))

- Water tank (Feng and Smith (04))

- Surrounded rock (De Roek, Ellis, Gianotti, Mootgat, Olive and Pape (05))
Place another stopper near ATLAS or CMS to stop long-lived charged SUSY particles (even for $c_t > 10$ m)

- 5 m Iron wall (Hamaguchi, Kuno, Nakaya, and Nojiri (04))
- Water tank (Feng and Smith (04))
- Surrounded rock (De Roek, Ellis, Gianotti, Mootgat, Olive and Pape (05))
Conclusion
Conclusion

In neutralino LSP and gravitino NLSP scenario, the constraint on reheating temperature after primordial inflation is very stringent in gravity mediated SUSY breaking models.
Conclusion

In neutralino LSP and gravitino NLSP scenario, the constraint on reheating temperature after primordial inflation is very stringent in gravity mediated SUSY breaking models.

$$T_R \leq 3 \times 10^5 \text{GeV} - 10^7 \text{ GeV}$$

(for $m_{3/2} = 100 \text{ GeV} - 10 \text{TeV}$)
Conclusion

In neutralino LSP and gravitino NLSP scenario, the constraint on reheating temperature after primordial inflation is very stringent in gravity mediated SUSY breaking models.

\[T_R \leq 3 \times 10^5 \text{ GeV} - 10^7 \text{ GeV} \]

(for \(m_{3/2} = 100 \text{ GeV} - 10 \text{TeV} \))

Simple relic neutralino NLSP and its daughter gravitino LSP scenario was disfavored by BBN because of \(\chi \)'s high branching ratio into hadrons.
Conclusion

In neutralino LSP and gravitino NLSP scenario, the constraint on reheating temperature after primordial inflation is very stringent in gravity mediated SUSY breaking models.

\[T_R \leq 3 \times 10^5 \text{GeV} - 10^7 \text{GeV} \]

(for \(m_{3/2} = 100 \text{ GeV} - 10 \text{TeV} \))

Simple relic neutralino NLSP and its daughter gravitino LSP scenario was disfavored by BBN because of \(\chi \)'s high branching ratio into hadrons

CHAMP BBN is problematic in stau NLSP and gravitino LSP scenario (Catalyzed BBN) without tuning reheating temperature to fit \(\Omega_{CDM} \)
Conclusion

In neutralino LSP and gravitino NLSP scenario, the constraint on reheating temperature after primordial inflation is very stringent in gravity mediated SUSY breaking models.

\[T_R \leq 3 \times 10^5 \text{GeV} - 10^7 \text{GeV} \]

(for \(m_{3/2} = 100 \text{ GeV} - 10 \text{ TeV} \))

Simple relic neutralino NLSP and its daughter gravitino LSP scenario was disfavored by BBN because of \(\chi \)'s high branching ratio into hadrons.

CHAMP BBN is problematic in stau NLSP and gravitino LSP scenario (Catalyzed BBN) without tuning reheating temperature to fit \(\Omega_{CDM} \)

On the other hand, stau NLSP and flaxino(axino) LSP scenario in gravity mediated SUSY breaking is attractive with much shorter stau's lifetime (detectable in LHC!!!) because of no BBN catalysis.