In the wake of recent swings in the values of technology stocks and the prices of real estate, many people have become (painfully) familiar with the boom-and-bust cycles of speculative bubbles. Although playing out on longer time-scales, student enrollments in the sciences have followed a remarkably similar pattern during the decades since World War II. The characteristic pattern can be seen in several countries, including the United States, Canada, and the United Kingdom. Enrollment patterns, and the specific policies that have been forged at various times to rapidly expand the number of trained scientists, sit at the intersection of science and society; they are where broad societal priorities and the infrastructure of higher education meet head on. Amid current discussions about globalization -- especially fears of potential challenges from booming scientific and technical training efforts in India and China -- the time is ripe to take stock of previous boom- and-bust cycles in our own recent past. How did they take hold, and what consequences have they had on the world of ideas? What intellectual trade-offs have been made, and with what impacts on the direction of scientific research?
Toil, Trouble, and the Cold War Bubble:

Physics and the Academy since World War II

David Kaiser
Sept
24 Jos Uffink  Full QM
30 ILTM
Condensed Matter
Oct
2 *surprise* Chemical Time
8 Bistro Session
15 Chris Elsley Neuroscience
22 Andy Albrecht CosmologyTime
29 Sara Diamond Arts Science
Nov
5 Vincent Rivasseau QFT
12 Xiaobo Wen Condensed Matter Grandings
19 Bistro Session
26 Catherine Killin Condensed Matter
Dec
3 Abhay Ashtekar Quantum Gravity
10 Kim Dirac Hypothesis Theory
Pedagogical Histories

Stabilizing research tools and training new recruits often go hand-in-hand.
Pedagogical Histories

Stabilizing research tools and training new recruits often go hand-in-hand.
The Gathering Storm?

RISING ABOVE THE GATHERING STORM

Energizing and Employing America for a Brighter Economic Future

AMERICAN COMPETITIVENESS INITIATIVE

Leading the World in Innovation

The New York Times

National Science Panel Warns Of Far Too Few New Scientists

Newsweek

WIRED

New engineers trained, 2004:

China: 350k
U.S.: 140k
Déjà Vu

Swapping just a few terms — “national security” for “economic competitiveness” and “Soviet Union” for “India and China” — produces an uncanny resemblance to an earlier frenzy...

Russia Is Overtaking U.S. In Training of Technicians

Red Technical Graduates Are Double Those in U.S.
The Cold War Bubble
I. A Speculative Bubble?

II. Enrollments and Epistemology

III. All Over Again?
Speculative Bubbles

- Tulip craze, 1630s
- South Sea Bubble, 1720
- Tech stocks, 1990s

“a situation in which temporarily high prices are sustained largely by investors’ enthusiasm rather than by consistent estimation of real value.” Robert Shiller

Roles of hype, amplification, and feedback loops.
Assessing the Soviet Threat


Alexander Korol, Soviet Education for Science and Technology (1957)

Nicholas DeWitt, Education and Professional Employment in the USSR (1961)

DeWitt: “an indefatigable digger”; Korol: “fastidious”
“Perplexities and Pitfalls”

Both DeWitt and Korol warned against getting lost in the “numbers game”:

- large fraction of Soviet engineers worked in administration, not R&D
- extreme specialization
- standards jimmed to fit “production quotas” of 5-year plans
- extension and correspondence students inflating the ranks: 1/3 in 1955, >1/2 in 1960.

nonferrous metals metallurgy

1. copper and alloys;
2. precious metals refining;
3. …
11. …
Enrollment Patterns

Korol refused to tabulate enrollment data side by side, to avoid “unwarranted implications.” DeWitt did so only after emphasizing all the caveats. He found:

<table>
<thead>
<tr>
<th></th>
<th>US</th>
<th>USSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>full-time students:</td>
<td>3 : 1</td>
<td></td>
</tr>
<tr>
<td>full + extension:</td>
<td>4 : 3</td>
<td></td>
</tr>
<tr>
<td>science and technology:</td>
<td>25%</td>
<td>75%</td>
</tr>
</tbody>
</table>

The Soviets were graduating 2-3 times more students per year in engineering and applied sciences than the US.
Hype: “Two to Three Times...”

Red Technical Graduates Are Double Those in U.S.

Russia Is Overtaking U.S. In Training of Technicians

...and then came Sputnik.
Amplification

I. I. Rabi, chair of PSAC: Urged Eisenhower to use Sputnik as a pretext for closing the “manpower gap.”

Elmer Hutchisson, director of AIP: “an almost unprecedented opportunity” to “influence public opinion greatly.”

Hans Bethe, past president of APS: repeated DeWitt’s ratio without knowing from whence it came or how it had been computed.

Eager press: count up number of hours spent on physics in US and USSR high schools.
Feedback Loop


First 4 years: 7k graduate fellowships; 500k undergrads. Plus block grants and added incentives to states to increase enrollments. Sputnik scare had been used as a “Trojan Horse.”

NDEA’s proponents “were willing to strain the evidence to establish a new policy.”

All aid was restricted to “defense” fields: science, math, engineering, and area studies.
Lies, Damn Lies, and Statistics

Even aside from DeWitt’s and Korol’s caveats — uneven quality, severe specialization, and inflation from extension and correspondence students — the numbers themselves deserved a closer look.

DeWitt: “engineering and applied sciences” = engineering, agriculture, and health → “2 to 3 times”

If drop agriculture and health and include science and math, the Soviet lead fell by a factor of 10.
The Bubble Bursts

AIP Job Placement Registries

<table>
<thead>
<tr>
<th>Students registered</th>
<th>Jobs on offer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>449</td>
</tr>
<tr>
<td>1968</td>
<td>989</td>
</tr>
<tr>
<td>1970</td>
<td>1010</td>
</tr>
<tr>
<td>1971</td>
<td>1053</td>
</tr>
</tbody>
</table>
Enrollments and Epistemology

Was there any interplay between these enrollment swings and the world of ideas? Focus on the teaching of quantum mechanics.
“The General Epistemological Lesson…”

Kant  Mach  Jung

and friends
Quantum Americans

US physicists also grappled with philosophical issues of QM before the war, in print and in their classrooms. They did not embrace the same responses as the Europeans, but they encouraged a similar activity.

Caltech oral exams, 1930s:
- measurement problem and the role of the observer
- uncertainty principle and the nature of physical explanation

Lecture notes, exams, textbooks, book reviews...
Philosophy Disappears

Sudden shift by mid-1950s: interpretive material disappears from US lectures, exams, problem sets, and textbooks.

“Enough with this musty atavistic to-do about position and momentum…”

*Feshbach, 1962*

**Caltech oral exams, 1950s:**

- “the effort invested in analysis of paradoxes and queer logical points was of no use in the exam.”
- best advice: “memorize” and “rehearse” stock problems (“the usual spiel”).

**Book reviews:**

“avoids philosophical discussion”;
“omits distracting, philosophically tainted questions”…

**General exams elsewhere:**
interpretive essay questions (1930s-40s) replaced by coterie of standard calculations (1950s).
Accounting for the Shift

- Were the puzzles and paradoxes resolved?
- Did war work turn US physicists into pragmatists?
- Changing patronage or employment demands?
Class Size and Teaching Style

“philosophical” classrooms
enrollment: $12.7 \pm 5.7$
interpretive material: $12.8 \pm 1.4$

“pragmatic” classrooms
enrollment: $39.3 \pm 13.4$
interpretive material: $2.6 \pm 1.5$

Gerjuoy, 1956: “With these subjects [causality, complementarity, uncertainty], lecturing is of little avail. The baffled student hardly knows what to write down, and what notes he does take are almost certain to horrify the instructor.”

Hill, 1958: role of class discussions.
Essays and Algebra

US physicists published 33 graduate-level QM textbooks during 1949-78, containing 6,261 problems. The proportion of interpretive (short-answer) problems stayed low until enrollments crashed.
**International Comparisons**

**Canada, UK, USSR:** Similar enrollment patterns; similar QM textbooks.

**W. Europe:** Little enrollment pressure; QM textbooks still included long sections on philosophy. They averaged *three times* the proportion of short-answer problems as US books.
A Second Bubble

Trade-Offs

It’s not that one style was good and the other bad; by no means was the process one of “dumbing down.” The narrowing of scope to calculation rather than interpretation fostered certain research directions while closing off others.
Other Bubbles

Mid-1980s:
introductory
CS courses
shifted from
theories of
computation to
minutiae of
programming.
Bubbles Today?

Number of Ph.D.s in Biotech granted in US per year

Annual rate has more than quadrupled in two decades...
Bubbles and the World of Ideas

We must treat talk of “shortages” of scientific and technical labor with great care. The numbers can be made to tell all kinds of stories.

More is at stake than an unstable labor market. These boom-and-bust cycles can shape what counts as “real” science in a given time and place.
**Bubbles Today?**

Number of Ph.D.s in Biotech granted in US per year

Annual rate has more than **quadrupled** in two decades...
Other Bubbles

Mid-1980s: introductory CS courses shifted from theories of computation to minutiae of programming.
Trade-Offs

It’s not that one style was good and the other bad; by no means was the process one of “dumbing down.” The narrowing of scope to calculation rather than interpretation fostered certain research directions while closing off others.
A Second Bubble

Bubbles and the World of Ideas

We must treat talk of “shortages” of scientific and technical labor with great care. The numbers can be made to tell all kinds of stories.

More is at stake than an unstable labor market. These boom-and-bust cycles can shape what counts as “real” science in a given time and place.
The Bubble Bursts

AIP Job Placement Registries

<table>
<thead>
<tr>
<th>Students registered</th>
<th>Jobs on offer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>449</td>
</tr>
<tr>
<td>1968</td>
<td>989</td>
</tr>
<tr>
<td>1970</td>
<td>1010</td>
</tr>
<tr>
<td>1971</td>
<td>1053</td>
</tr>
</tbody>
</table>