Physicists attempt to scale the ivory towers of finance (ten years later, looking forward)

Perimeter Institute
May 2, 2009

J. Doyne Farmer
Santa Fe Institute
LUISS Guido Carli (Rome)
Opportunities and dangers

• Economics, and particularly finance, present huge opportunities
 – we bring new perspective
 – low hanging fruit
 – laws of social systems!
 – laboratory to study social evolution

• Downside
 – entrenched, pre-existing social order
 – physics envy by economists, arrogance on both sides
 – narrow mindedness of physics establishment
Laws of markets?

- Are markets on other planets anything like those on earth?
- Prediction: They will have money, markets derivatives, ...
- They will obey many of same regularities as our markets do.
Market laws

- Pareto’s Law for income, (exponential for body ?)
- Long-memory of supply and demand
- Power law for trading volume
- Relation between exponents of volume, S&D
- Anomalous scaling of firm size
- Laws of market impact
- Volatility = market impact = spread/2
- Power law for price fluctuations
- Equation of state of price statistics and order flow
- Distribution of mutual fund sizes
- Scaling of impact with market capitalization
- (many more)
Market laws

- Pareto’s Law for income, (exponential for body ?)
- Long-memory of supply and demand
- Power law for trading volume
- Relation between exponents of volume, S&D
- Anomalous scaling of firm size
- Laws of market impact
- Volatility = market impact = spread/2
- Power law for price fluctuations
- Equation of state of price statistics and order flow
- Distribution of mutual fund sizes
- Scaling of impact with market capitalization
- (many more)
Financial markets provide a perfect laboratory in which to study social evolution.
Financial markets provide a perfect laboratory in which to study social evolution

- Define “evolution” as any process with descent, variation, and selection.
Financial markets provide a perfect laboratory in which to study social evolution

- Define “evolution” as any process with descent, variation, and selection.
- Social evolution differs in detail, but has the same three elements. But what is evolving?
- Of course, comparison should not be taken literally: Important to understand both similarities and differences.
What is biggest difference between social and biological evolution?

People can think.

• In this respect, biology is easier: Accurately modeling thinking humans is very difficult.
 – Innovation
 – Strategic anticipation

• Limiting cases (tractable but far-fetched):
 – Perfect rationality
 – Zero Intelligence

• ZI is like biology (if you define “ZI” so as to include rules of thumb).
Advantages of financial markets as laboratory of study

• Rapid timescale of evolution
 – Market force, ecology and evolution
 – Conjectured law for evolution to efficiency (Reality game, Cherkashin, Farmer, Lloyd)

• Huge data sets

• Highly constrained environment
Market laws

- Pareto’s Law for income, (exponential for body ?)
- Long-memory of supply and demand
- Power law for trading volume
- Relation between exponents of volume, S&D
- Anomalous scaling of firm size
- Laws of market impact
- Volatility = market impact = spread/2
- Power law for price fluctuations
- Equation of state of price statistics and order flow
- Distribution of mutual fund sizes
- Scaling of impact with market capitalization
- (many more)
Financial markets provide a perfect laboratory in which to study social evolution
Market laws

- Pareto’s Law for income, (exponential for body ?)
- Long-memory of supply and demand
- Power law for trading volume
- Relation between exponents of volume, S&D
- Anomalous scaling of firm size
- Laws of market impact
- Volatility = market impact = spread/2
- Power law for price fluctuations
- Equation of state of price statistics and order flow
- Distribution of mutual fund sizes
- Scaling of impact with market capitalization
- (many more)
Financial markets provide a perfect laboratory in which to study social evolution.
Financial markets provide a perfect laboratory in which to study social evolution

• Define “evolution” as any process with descent, variation, and selection.
Financial markets provide a perfect laboratory in which to study social evolution

- Define “evolution” as any process with descent, variation, and selection.
- Social evolution differs in detail, but has the same three elements. But what is evolving?
- Of course, comparison should not be taken literally: Important to understand both similarities and differences.
What is biggest difference between social and biological evolution?
What is biggest difference between social and biological evolution?

People can think.

- In this respect, biology is easier: Accurately modeling thinking humans is very difficult.
 - Innovation
 - Strategic anticipation
- Limiting cases (tractable but far-fetched):
 - Perfect rationality
 - Zero Intelligence
- ZI is like biology (if you define “ZI” so as to include rules of thumb).
Statistical mechanics of human systems

- Many human systems exhibit emergent phenomena generated by low level interactions of many individuals.
- In constrained settings these exhibit consistent laws, like physical systems.
- Challenge to make microscopic models of actors.
- Two strategies:
 - Find situations where institutional constraints dominate human choice.
 - Find situations where we can use simple heuristics to characterize human reasoning.
Advantages of financial markets as laboratory of study

- Rapid timescale of evolution
 - Market force, ecology and evolution
 - Conjectured law for evolution to efficiency (Reality game, Cherkashin, Farmer, Lloyd)

- Huge data sets

- Highly constrained environment
Market efficiency?

Strength of two proprietary predictive signals (1975 - 1998), (measured as smoothed average % correlation between signal and future weekly return)

Signal 1:

[Graph]

Signal 2:

[Graph]
Advantages of financial markets as laboratory of study

• Rapid timescale of evolution
 – Market force, ecology and evolution
 – Conjectured law for evolution to efficiency (Reality game, Cherkashin, Farmer, Lloyd)

• Huge data sets

• Highly constrained environment
INTERPOLATION VS. EXTRAPOLATION
Problems with neoclassical economics

- Utility
- Measure of expected states of nature
- Cognitive model of agents
- Need to model institutions!
- Economy is an evolving complex system
- Difficulty of making falsifiable predictions
 - toy models vs. real models
Developmental stage?

- Medieval culture of knowledge
- Need for fancier math?
- Pre-Newtonian?
 - taxonomy of strategies
 - search for empirical regularities
Problems with neoclassical economics

- Utility
- Measure of expected states of nature
- Cognitive model of agents
- Need to model institutions!
- Economy is an evolving complex system
- Difficulty of making falsifiable predictions
 - toy models vs. real models
Market efficiency?

Strength of two proprietary predictive signals (1975 - 1998), (measured as smoothed average % correlation between signal and future weekly return)

Signal 1:

Signal 2:
Problems with neoclassical economics

- Utility
- Measure of expected states of nature
- Cognitive model of agents
- Need to model institutions!
- Economy is an evolving complex system
- Difficulty of making falsifiable predictions
 - toy models vs. real models
Advantages of financial markets as laboratory of study

- Rapid timescale of evolution
 - Market force, ecology and evolution
 - Conjectured law for evolution to efficiency (Reality game, Cherkashin, Farmer, Lloyd)

- Huge data sets
- Highly constrained environment
Problems with neoclassical economics

- Utility
- Measure of expected states of nature
- Cognitive model of agents
- Need to model institutions!
- Economy is an evolving complex system
- Difficulty of making falsifiable predictions
 - toy models vs. real models
Developmental stage?

- Medieval culture of knowledge
- Need for fancier math?
- Pre-Newtonian?
 - taxonomy of strategies
 - search for empirical regularities
Developmental stage?

• Medieval culture of knowledge
• Need for fancier math?
• Pre-Newtonian?
 – taxonomy of strategies
 – search for empirical regularities
Risk under open-ended evolution

- Reducing risk by controlling the environment is a tried and true evolutionary strategy.
- Increasing complexity makes fitness increasingly endogenous (coevolution, niche construction)
- Makes optimization difficult
 - fitness determined by actors (self and others)
- Extrapolation rather than interpolation
- Effort to reduce risk can create risk
Risk under open-ended evolution

- Reducing risk by controlling the environment is a tried and true evolutionary strategy.
- Increasing complexity makes fitness increasingly endogenous (coevolution, niche construction)
- Makes optimization difficult
 - fitness determined by actors (self and others)
- Extrapolation rather than interpolation
- Effort to reduce risk can create risk
Hedge fund/leverage model

- With Stefan Thurner and John Geanakoplos
- Agents
 - hedge funds (long only value investors)
 - noise traders reverting to a fundamental value
 - investors choosing between hedge fund and cash; base decisions on trailing performance of funds
 - bank lending to hedge funds
Hedge funds

- Hedge funds can use **leverage**, defined as ratio of value of holdings to their wealth. Maximum leverage is key parameter.
- Hedge funds differ in their aggression, i.e. how much they buy for a given mispricing (slope).
Hedge funds can use leverage, defined as ratio of value of holdings to their wealth. Maximum leverage is key parameter.

Hedge funds differ in their aggression, i.e. how much they buy for a given mispricing (slope).
Wealth vs. time, 10 funds

- Hedge fund wealth fluctuates
- There are crashes
- Evolutionary pressure favors more aggressive funds
Leverage causes extreme stock price movements
Wealth vs. time, 10 funds

- Hedge fund wealth fluctuates
- There are crashes
- Evolutionary pressure favors more aggressive funds
Leverage causes extreme stock price movements
Leverage causes power law tail for stock returns

\[P(r > R) \sim R^{-\gamma} \]
Extreme risk increases with leverage
Leverage and volatility

Stock returns vs. time

- When mispricing is small, funds lower volatility
- At maximum leverage they amplify volatility
- Extreme events caused by attempt to control risk.
- Other examples: stop-loss orders, call options, ...
Hedge funds can use leverage, defined as ratio of leverage is key parameter how much they buy for a given mispricing (slope) of holdings to their wealth. Maximum mispricing Hedge funds differ in their aggression, i.e. how they demand.
Leverage causes power law tail for stock returns

\[P(r > R) \sim R^{-\gamma} \]
Leverage and volatility

Stock returns vs. time

- When mispricing is small, funds lower volatility
- At maximum leverage they amplify volatility
- Extreme events caused by attempt to control risk.
- Other examples: stop-loss orders, call options, ...
EXTREME RISK INCREASES WITH LEVERAGE
Leverage causes power law tail for stock returns

\[P(r > R) \sim R^{-\gamma} \]
Leverage causes extreme stock price movements
Leverage causes power law tail for stock returns

\[P(r > R) \sim R^{-\gamma} \]
Extreme risk increases with leverage
Standard bank risk control policy is counterproductive

- When $k > 0$, banks lower maximum leverage when historical volatility is higher
- Results in more defaults.
Leverage and volatility

Stock returns vs. time

- When mispricing is small, funds lower volatility
- At maximum leverage they amplify volatility
- Extreme events caused by attempt to control risk.
- Other examples: stop-loss orders, call options, ...

\[\lambda_{\text{max}} = 1 \]
\[\lambda_{\text{max}} = 10 \]
Extreme risk increases with leverage
When $k > 0$, banks lower maximum leverage when historical volatility is higher.

Results in more defaults.
Evolutionary pressure for higher leverage

(a)

\[\Lambda \] vs. \[\lambda_{\text{max}} \]

- Blue squares: fund 1-9; \(\lambda_{\text{max}} = 3 \)
- Red circles: fund 10; \(\lambda_{\text{max}} = 1-10 \)
Need to regulate leverage

- Evolutionary pressure drives funds toward increasing leverage.
- Causes increased defaults, more extreme events, and lowers returns for everyone.
- Goldilocks principle: What leverage is “just right”?
 - Peters: Kelly criterion suggests μ / σ^2
- Social experiments: Friedman was wrong!
Extensions

- Let the bank leverage too
- Network of banks and hedge funds
- Multiple assets, derivatives, stop-loss
- Optimal control of risk by banks and hedge funds
- Evolution of strategies
Need to regulate leverage

- Evolutionary pressure drives funds toward increasing leverage.
- Causes increased defaults, more extreme events, and lowers returns for everyone.
- Goldilocks principle: What leverage is “just right”?
 - Peters: Kelly criterion suggests μ/σ^2
- Social experiments: Friedman was wrong!
Extensions

- Let the bank leverage too
- Network of banks and hedge funds
- Multiple assets, derivatives, stop-loss
- Optimal control of risk by banks and hedge funds
- Evolution of strategies
Need to regulate leverage

- Evolutionary pressure drives funds toward increasing leverage.
- Causes increased defaults, more extreme events, and lowers returns for everyone.
- Goldilocks principle: What leverage is “just right”?
 - Peters: Kelly criterion suggests $\frac{\mu}{\sigma^2}$
- Social experiments: Friedman was wrong!
Extensions

- Let the bank leverage too
- Network of banks and hedge funds
- Multiple assets, derivatives, stop-loss
- Optimal control of risk by banks and hedge funds
- Evolution of strategies
We are increasingly engaged in shaping our own environment

- How do we reduce risks?
- Two basic approaches
 - Distribute risks: Decentralize, decouple
 - Keynes: Manage the economy macroscopically
 - Not mutually exclusive
Extensions

- Let the bank leverage too
- Network of banks and hedge funds
- Multiple assets, derivatives, stop-loss
- Optimal control of risk by banks and hedge funds
- Evolution of strategies
We are increasingly engaged in shaping our own environment

- How do we reduce risks?
- Two basic approaches
 - Distribute risks: Decentralize, decouple
 - Keynes: Manage the economy macroscopically
 - Not mutually exclusive
Extensions

- Let the bank leverage too
- Network of banks and hedge funds
- Multiple assets, derivatives, stop-loss
- Optimal control of risk by banks and hedge funds
- Evolution of strategies
We are increasingly engaged in shaping our own environment

- How do we reduce risks?
- Two basic approaches
 - Distribute risks: Decentralize, decouple
 - Keynes: Manage the economy macroscopically
 - Not mutually exclusive
Need to treat the economy as an evolving complex system

- Current macro models are much too simple
- Current financial models take macro as given
- Lucas critique, falsification of Phillips curve
 - resulting devolution of macroeconomics
- Need to model interacting institutions
 - obvious approach: agent-based model
 - Need to explain macroeconomy from microeconomic arguments (Axtell)
 - caution: much less data