Title: Ontology of the quantum state: wavefunction vs. spacetime state realism

Date: Sep 27, 2009 03:00 PM

URL: http://pirsa.org/09090081

Abstract: TBA
Plan:

- Presenting wavefunction realism
 - Configuration vs Physical space
- Challenges to wavefn realism
- Against wavefn realism
- Spacetime State Realism
Wavefunction Realism

• Realist subdivision:
 – The q state represents a *thing* (well, what kind of thing?)
 – The q state ascribes genuine (realistic) properties to systems (e.g., via e-e link)
Wavefunction Realism

- Realist subdivision:
 - The q state represents a *thing* (well, what kind of thing?)
 - The q state ascribes genuine (realistic) properties to systems (e.g., via e-e link)

- Specifying an ontology:
 - Property bearers;
Wavefunction Realism

- Realist subdivision:
 - The q state represents a *thing* (well, what kind of thing?)
 - The q state ascribes genuine (realistic) properties to systems (e.g., via e-e link)

- Specifying an ontology:
 - Property bearers;
 - Character of Properties (internal to theory, reln to everyday world of experience)
Wavefunction Realism

• Realist subdivision:
 – The q state represents a *thing* (well, what kind of thing?)
 – The q state ascribes genuine (realistic) properties to systems (e.g., via e-e link)

• Specifying an ontology:
 – Property bearers;
 – Character of Properties (internal to theory, reln to everyday world of experience)

• Case of EM field
Some distinctions:

- Representation and represented
 - Mathematical (representational) object vs Physical items (represented)
 - Mathematical: $\Psi(X,t)$, a fn defined on a (high D) space Δ
 - Physical: a field (ψ-field) living in a high D physical space
- Configuration space, Γ, vs Δ
 - Γ: a representation of 3-D configurations;
 - Δ: a representation of positions in a 3N-D physical space
Thus, for wavefn realism:

• (ψ, Δ) represents a particular distribution of properties (a field) in a high-D physical space.
 – No 3D space at level of fundamental ontology.
Thus, for wavefn realism:

- \((\psi, \Delta)\) represents a particular distribution of properties (a field) in a high-D physical space.
 - No 3D space at level of fundamental ontology.
- N.B. This is *realism*; the properties are not to be understood in terms of probabilities for measurement outcomes. They are *primitive* and *intrinsic*.
 - (Probs for measurement outcome will appear derivatively, following a *dynamical* analysis of measurement.)
Two kinds of problems:

1) Can we understand what the ψ-field is?

2) Is it possible to recover 3-D going’s on? (Monton, P. Lewis, Maudlin)
On (2)

• Distinguish Δ and Γ once more:
On (2)

• Distinguish Δ and Γ once more:

• Challenge: Δ is not a space of configurations, so no satisfactory identification of 3-D happenings can be had (cf. Monton).
On (2)

- Distinguish Δ and Γ once more:
- Challenge: Δ is not a space of configurations, so no satisfactory identification of 3-D happenings can be had (cf. Monton).

- But:
 i) Δ is not as structureless as R^{3N}; dynamics-spacetime symmetry link (e.g., Brown)
On (2)

- Distinguish \(\Delta \) and \(\Gamma \) once more:

- Challenge: \(\Delta \) is not a space of configurations, so no satisfactory identification of 3-D happenings can be had (cf. Monton).

- But:
 i) \(\Delta \) is not as structureless as \(R^{3N} \); dynamics-spacetime symmetry link (e.g., Brown)
 ii) Don’t just focus on the space and on the synchronic; \(\psi \)-field should be included (diachronically) in the supervenience base.
Against Wavefn Realism:

- **Unnatural**
 - A) to prefer $\text{pos}^n \text{ repr}^n$
 - B) the Schrödinger form of dynamics

- What happens on move to QFT?
 - Particles not fundamental and their positions imprecisely defined; no decent notion of configuration space; variable particle number.
 - Field configurations? Non-unique.
 - Not taking role of spacetime sufficiently seriously
Spacetime State Realism

- Democracy: characterise state as a (positive normalised) linear functional of dynamical variables: a density operator ρ

- But what are the property bearers?
 - The Universe as a whole?
 - Better: subsystems
 - The ρ assigned to a subsystem represents its intrinsic properties, understood as primitive.
• **Understanding ρ?**

 – Role in theory, cf. EM case, once more.

 – No mathematical segregation principle!
• Understanding ρ?
 – Role in theory, cf. EM case, once more.
 – No mathematical segregation principle!
• Natural choice of subsystems: regions of spacetime.
• Understanding ρ?
 – Role in theory, cf. EM case, once more.
 – No mathematical segregation principle!

• Natural choice of subsystems: regions of spacetime.

• Uniform ontological picture for NRQM and QFT (can reformulate NRQM in Fock space terms with number states for spatial regions):
• Understanding ρ?
 – Role in theory, cf. EM case, once more.
 – No mathematical segregation principle!
• Natural choice of subsystems: regions of spacetime.
• Uniform ontological picture for NRQM and QFT (can reformulate NRQM in Fock space terms with number states for spatial regions):

PICTURE: non-separable field on spacetime; field values for regions specified by their ρ.
(link to experience: somewhat standard; decoherence)
Conclusions

• We can find intelligible property-bearers and properties to specify the ontology of the quantum state;

• Wavefn Realism: high-D physical space, separable field;

• Spacetime State Realism: physical arena is spacetime, a non-separable field.

• The latter is to be preferred: a univocal ontological picture across different quantum theories; natural role for spacetime; no unnatural preference for a particular set of dynamical variables.
References:

References:

