Evidence in favour of ψ-epistemic models
The analogy to Liouville mechanics
Example 1: The impossibility of discriminating non-orthogonal states

Consider

\[|\psi_1\rangle \]

\[|\psi_2\rangle \]
Example 1: The impossibility of discriminating non-orthogonal states

Consider $|\psi_1\rangle$ and $|\psi_2\rangle$.

Newtonian analogy: Mysterious. No analogue of non-orthogonality.
Example 1: The impossibility of discriminating non-orthogonal states

Consider

\[|\psi_1\rangle \quad |\psi_2\rangle \]

Newtonian analogy: Mysterious. No analogue of non-orthogonality.

Liouville analogy: Natural

\[\mu_1(x, p) \quad \mu_2(x, p) \]
Example 2: Lack of exponential divergence of states under chaotic evolution

In Newtonian mechanics, exponential divergence of ontic states is the signature of chaos.
Example 2: Lack of exponential divergence of states under chaotic evolution

In Newtonian mechanics, exponential divergence of ontic states is the signature of chaos.

In quantum theory,

$$\langle \psi_1(t) | \psi_2(t) \rangle = \langle \psi_1(0) | U^* U | \psi_2(0) \rangle$$

$$= \langle \psi_1(0) | \psi_2(0) \rangle$$

No divergence!
Example 2: Lack of exponential divergence of states under chaotic evolution

In Newtonian mechanics, exponential divergence of ontic states is the signature of chaos.

In quantum theory,
\[
\langle \psi_1(t) | \psi_2(t) \rangle = \langle \psi_1(0) | U^\dagger U | \psi_2(0) \rangle \\
= \langle \psi_1(0) | \psi_2(0) \rangle
\]

No divergence!

Newtonian analogy: This is puzzling

Liouville analogy: This is natural, due to Liouville’s theorem
\[
\int dx dp \sqrt{\mu_1(x, p, t)} \sqrt{\mu_2(x, p, t)} = \int dx dp \sqrt{\mu_1(x, p, 0)} \sqrt{\mu_2(x, p, 0)}
\]
Example 3: The impossibility of cloning non-orthogonal states

(C. Fuchs, 1996)

Cloning the set \(\{ |\psi_1\rangle, |\psi_2\rangle \} \) implies \(|\psi_s\rangle \chi \rightarrow |\psi_s\rangle |\psi_s\rangle \) for \(s = 1, 2 \)
Example 3: The impossibility of cloning non-orthogonal states

(C. Fuchs, 1996)

Cloning the set $\{|\psi_1\rangle, |\psi_2\rangle\}$ implies $|\psi_s\rangle |\chi\rangle \rightarrow |\psi_s\rangle |\psi_s\rangle$ for $s = 1, 2$

By unitarity, the inner product must be constant
But $|\langle \psi_1 | \langle \chi | (|\psi_2\rangle |\chi\rangle)|^2 = |\langle \psi_1 | \psi_2\rangle|^2$

while $|\langle \psi_1 | \langle \psi_1 | (|\psi_2\rangle |\psi_2\rangle)|^2 = |\langle \psi_1 | \psi_2\rangle|^2$
Example 3: The impossibility of cloning non-orthogonal states

(C. Fuchs, 1996)

Cloning the set \(\{ |\psi_1\rangle, |\psi_2\rangle \} \) implies \(|\psi_s\rangle |\chi\rangle \to |\psi_s\rangle |\psi_s\rangle \) for \(s = 1,2 \)

By unitarity, the inner product must be constant

But \(\langle \psi_1 | \langle \chi | (|\psi_2\rangle |\chi\rangle) = \langle \psi_1 | \psi_2 \rangle \)

while \(\langle \psi_1 | \langle \psi_1 | (|\psi_2\rangle |\psi_2\rangle) = \langle \psi_1 | \psi_2 \rangle^2 \)

These are equal iff \(\langle \psi_1 | \psi_2 \rangle = 0 \) or 1 i.e. orthogonal or identical
Example 3: The impossibility of cloning non-orthogonal states

(C. Fuchs, 1996)

Cloning the set \(\{ \psi_1, \psi_2 \} \) implies \(\psi_s \chi \rightarrow \psi_s \psi_s \) for \(s = 1, 2 \)

By unitarity, the inner product must be constant

But \(\langle \psi_1 | \langle \chi | (\psi_2 \chi) \rangle = \langle \psi_1 | \psi_2 \rangle \)

while \(\langle \psi_1 | \psi_1 | (\psi_2 \psi_2) \rangle = \langle \psi_1 | \psi_2 \rangle^2 \)

These are equal iff \(\langle \psi_1 | \psi_2 \rangle = 0 \) or \(1 \) i.e. orthogonal or identical

Liouville analogy:
Cloning the set \(\{ \mu_1(z), \mu_2(z) \} \) implies \(\mu_s(z) \nu(y) \rightarrow \mu_s(z) \mu_s(y) \) for \(s = 1, 2 \)
Example 3: The impossibility of cloning non-orthogonal states

(C. Fuchs, 1996)

Cloning the set \(\{ |\psi_1\rangle, |\psi_2\rangle \} \) implies \(|\psi_s\rangle |\chi\rangle \rightarrow |\psi_s\rangle |\psi_s\rangle \) for \(s = 1, 2 \)

By unitarity, the inner product must be constant

But \(\langle \psi_1 | \langle \chi | (|\psi_2\rangle |\chi\rangle) = \langle \psi_1 | \psi_2 \rangle \)

while \(\langle \psi_1 | \langle \psi_1 | (|\psi_2\rangle |\psi_2\rangle) = \langle \psi_1 | \psi_2 \rangle^2 \)

These are equal iff \(\langle \psi_1 | \psi_2 \rangle = 0 \) or 1 i.e. orthogonal or identical

Liouville analogy:

Cloning the set \(\{ \mu_1(z), \mu_2(z) \} \) implies \(\mu_s(z) \nu(y) \rightarrow \mu_s(z) \mu_s(y) \) for \(s = 1, 2 \)

By Liouville’s theorem, the classical fidelity must be constant
Example 3: The impossibility of cloning non-orthogonal states

(C. Fuchs, 1996)

Cloning the set $\{|\psi_1\rangle, |\psi_2\rangle\}$ implies $|\psi_s\rangle \chi \rightarrow |\psi_s\rangle |\psi_s\rangle$ for $s = 1, 2$

By unitarity, the inner product must be constant

But $\langle \psi_1 | \chi | \langle \psi_2 | \chi \rangle \rangle = \langle \psi_1 | \psi_2 \rangle$

while $\langle \psi_1 | \psi_1 | \langle \psi_2 | \psi_2 \rangle \rangle = |\langle \psi_1 | \psi_2 \rangle|^2$

These are equal iff $\langle \psi_1 | \psi_2 \rangle = 0$ or 1 i.e. orthogonal or identical

Liouville analogy:

Cloning the set $\{\mu_1(z), \mu_2(z)\}$ implies $\mu_s(z)\nu(y) \rightarrow \mu_s(z)\mu_s(y)$ for $s = 1, 2$

By Liouville’s theorem, the classical fidelity must be constant

But $\int dz dy \sqrt{\mu_1(z)\nu(y)} \sqrt{\mu_2(z)\nu(y)} = \int dz \sqrt{\mu_1(z)} \sqrt{\mu_2(z)}$

while $\int dz dy \sqrt{\mu_1(z)\mu_1(y)} \sqrt{\mu_2(z)\mu_2(y)} = \left(\int dz \sqrt{\mu_1(z)} \sqrt{\mu_2(z)} \right)^2$
Example 3: The impossibility of cloning non-orthogonal states

(C. Fuchs, 1996)

Cloning the set $\{ | \psi_1 \rangle, | \psi_2 \rangle \}$ implies $| \psi_s \rangle \langle \chi | \rightarrow | \psi_s \rangle | \psi_s \rangle$ for $s = 1, 2$

By unitarity, the inner product must be constant
But $\langle \psi_1 | \langle \chi | (| \psi_2 \rangle | \chi \rangle) = | \langle \psi_1 | \psi_2 \rangle |

while $\langle \psi_1 | \langle \psi_1 | (| \psi_2 \rangle | \psi_2 \rangle) = | \langle \psi_1 | \psi_2 \rangle |^2$

These are equal iff $\langle \psi_1 | \psi_2 \rangle = 0 \text{ or } 1$ i.e. orthogonal or identical

Liouville analogy:

Cloning the set $\{ \mu_1 (z), \mu_2 (z) \}$ implies $\mu_s (z) \nu (y) \rightarrow \mu_s (z) \mu_s (y)$ for $s = 1, 2$

By Liouville’s theorem, the classical fidelity must be constant
But $\int dz dy \sqrt{\mu_1 (z) \nu (y)} \sqrt{\mu_2 (z) \nu (y)} = \int dz \sqrt{\mu_1 (z)} \sqrt{\mu_2 (z)}$

while $\int dz dy \sqrt{\mu_1 (z) \mu_1 (y)} \sqrt{\mu_2 (z) \mu_2 (y)} = \left(\int dz \sqrt{\mu_1 (z)} \sqrt{\mu_2 (z)} \right)^2$

These are equal iff $\int dz \sqrt{\mu_1 (z)} \sqrt{\mu_2 (z)} = 0 \text{ or } 1$ i.e. disjoint or identical
Where the Liouville analogy fails

Pure states: In Liouville mechanics, they are Dirac-delta functions on phase space

Thus, they have strictly disjoint support
(hence distinguishable, clonable)

State of complete knowledge = Newtonian state

In other words: Quantum states are analogous to states of incomplete knowledge

Consider: **Liouville mechanics with an epistemic restriction**
Where the Liouville analogy fails

Pure states: In Liouville mechanics, they are Dirac-delta functions on phase space

Thus, they have strictly disjoint support
(hence distinguishable, clonable)

State of complete knowledge = Newtonian state

In other words: Quantum states are analogous to states of incomplete knowledge

Consider: Liouville mechanics with an epistemic restriction
The analogy to Liouville mechanics with an epistemic restriction

Based primarily on unpublished work with Stephen Bartlett and Terry Rudolph
Liouville mechanics

\[\mu(x, p) \]

What is a good epistemic restriction to apply? -- look to quantum mechanics
\[\Delta x \Delta p \geq \frac{\hbar}{2} \]

\[C_{x,p} = \frac{\langle \hat{x} \hat{p} + \hat{p} \hat{x} \rangle - \langle \hat{x} \rangle \langle \hat{p} \rangle}{\hbar} \]
Liouville mechanics

$\mu(x, p)$

What is a good epistemic restriction to apply?
-- look to quantum mechanics

Quantum mechanics

Uncertainty principle:

$$\Delta^2 x \Delta^2 p - C^2_{x,p} \geq (\hbar/2)^2$$

where

$$\Delta^2 x \equiv \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2$$

$$C_{x,p} \equiv \frac{1}{2} \langle \hat{x} \hat{p} + \hat{p} \hat{x} \rangle - \langle \hat{x} \rangle \langle \hat{p} \rangle$$

$$\langle \hat{A} \rangle \equiv \text{Tr}(\hat{A} \hat{\rho})$$
Liouville mechanics

\[\mu(x, p) \]

What is a good epistemic restriction to apply? -- look to quantum mechanics

Quantum mechanics

Uncertainty principle:

\[\Delta^2 x \Delta^2 p - C_{x,p}^2 \geq (\hbar/2)^2 \]

where

\[\Delta^2 x \equiv \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2 \]

\[C_{x,p} \equiv \frac{1}{2} \langle \hat{x} \hat{p} + \hat{p} \hat{x} \rangle - \langle \hat{x} \rangle \langle \hat{p} \rangle \]

\[\langle A \rangle \equiv \text{Tr}(\hat{A} \hat{\rho}) \]

Liouville mechanics with an epistemic restriction

Uncertainty principle:

\[\Delta^2 x \Delta^2 p - C_{x,p}^2 \geq (\hbar/2)^2 \]

where

\[\Delta^2 x \equiv \langle x^2 \rangle - \langle x \rangle^2 \]

\[C_{x,p} \equiv \langle xp \rangle - \langle x \rangle \langle p \rangle \]

\[\langle f(x, p) \rangle \equiv \int dx dp f(x, p) \mu(x, p) \]
Liouville mechanics with an epistemic restriction

Assume:

The classical uncertainty principle (for a single particle in 1D):

The only Liouville distributions that can be prepared are those that satisfy

$$\Delta^2_x \Delta^2_p - C_{x,p}^2 \geq (\hbar/2)^2$$

and that have maximal entropy for a given set of second-order moments.
Liouville mechanics with an epistemic restriction

Assume:

The classical uncertainty principle (for a single particle in 1D):

The only Liouville distributions that can be prepared are those that satisfy

$$\Delta^2 x \Delta^2 p - C_{x,p}^2 \geq (\hbar/2)^2$$

and that have maximal entropy for a given set of second-order moments.

Among $\mu(x,p)$ with a given set of second-order moments, Gaussian distributions maximize the entropy
Valid epistemic states for one canonical system

\[\mu(x, p) \geq 0 \]

\[\int \mu(x, p) dx dp = 1 \]
Pure epistemic states

Mixed epistemic states
Multiplicity of convex decompositions of a mixed epistemic state into pure epistemic states
Quantum mechanics

Uncertainty principle:

\[\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0 \]

\[\gamma(\hat{\rho}) = 2 \begin{pmatrix} \Delta^2 x_1 & C_{x_1, p_1} & C_{x_1, x_2} & C_{x_1, p_2} & \ldots \\ C_{p_1, x_1} & \Delta^2 p_1 & C_{p_1, x_2} & C_{p_1, p_2} & \ldots \\ C_{x_2, x_1} & C_{x_2, p_1} & \Delta^2 x_2 & C_{x_2, p_2} & \ldots \\ C_{p_2, x_1} & C_{p_2, p_1} & C_{p_2, x_2} & \Delta^2 p_2 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

\[\Sigma = \begin{pmatrix} 0 & -1 & \ldots \\ 1 & 0 & \ldots \\ \vdots & \vdots & \ddots \end{pmatrix} \]
Quantum mechanics

Uncertainty principle:

\[\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0 \]

\[\gamma(\hat{\rho}) = 2 \begin{pmatrix} \Delta^2 x_1 & C_{x_1,p_1} & C_{x_1,x_2} & C_{x_1,p_2} & \cdots \\ C_{p_1,x_1} & \Delta^2 p_1 & C_{p_1,x_2} & C_{p_1,p_2} & \cdots \\ C_{x_2,x_1} & C_{x_2,p_1} & \Delta^2 x_2 & C_{x_2,p_2} & \cdots \\ C_{p_2,x_1} & C_{p_2,p_1} & C_{p_2,x_2} & \Delta^2 p_2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

\[\Sigma = \begin{pmatrix} 0 & -1 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ 0 & -1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

Single particle in 1d:

\[2 \begin{pmatrix} \Delta^2 x & C_{x,p} \\ C_{p,x} & \Delta^2 p \end{pmatrix} + i\hbar \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \geq 0 \]

\[2 \begin{pmatrix} \Delta^2 x & C_{x,p} - \frac{1}{2}i\hbar \\ C_{p,x} + \frac{1}{2}i\hbar & \Delta^2 p \end{pmatrix} \geq 0 \]

\[\Delta^2 x \Delta^2 p - C_{x,p}^2 \geq (\hbar/2)^2 \]
Quantum mechanics

Uncertainty principle:

\[\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0 \]

\[\gamma(\hat{\rho}) = 2 \begin{pmatrix} \Delta^2 x_1 & C_{x_1,p_1} & C_{x_1,x_2} & C_{x_1,p_2} & \cdots \\ C_{p_1,x_1} & \Delta^2 p_1 & C_{p_1,x_2} & C_{p_1,p_2} & \cdots \\ C_{x_2,x_1} & C_{x_2,p_1} & \Delta^2 x_2 & C_{x_2,p_2} & \cdots \\ C_{p_2,x_1} & C_{p_2,p_1} & C_{p_2,x_2} & \Delta^2 p_2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

\[\Sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 0 & -1 \\ 1 & 0 \\ \vdots & \vdots \end{pmatrix} \]

Liouville mechanics with an epistemic restriction

Uncertainty principle:

\[\gamma(\mu) + i\hbar \Sigma \geq 0 \]

\[\gamma(\mu) = 2 \begin{pmatrix} \Delta^2 x_1 & C_{x_1,p_1} & C_{x_1,x_2} & C_{x_1,p_2} & \cdots \\ C_{p_1,x_1} & \Delta^2 p_1 & C_{p_1,x_2} & C_{p_1,p_2} & \cdots \\ C_{x_2,x_1} & C_{x_2,p_1} & \Delta^2 x_2 & C_{x_2,p_2} & \cdots \\ C_{p_2,x_1} & C_{p_2,p_1} & C_{p_2,x_2} & \Delta^2 p_2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

\[\Sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 0 & -1 \\ 1 & 0 \\ \vdots & \vdots \end{pmatrix} \]
Quantum mechanics

Uncertainty principle:
\[\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0 \]

Single particle in 1d:
\[
2 \left(\begin{array}{cc}
\Delta^2 x & C_{x,p} \\
C_{p,x} & \Delta^2 p
\end{array} \right) + i\hbar \left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) \geq 0
\]
\[
2 \left(\begin{array}{cc}
\Delta^2 x & C_{x,p} - \frac{1}{2}i\hbar \\
C_{p,x} + \frac{1}{2}i\hbar & \Delta^2 p
\end{array} \right) \geq 0
\]
\[
\Delta^2 x \Delta^2 p - C_{x,p}^2 \geq (\hbar/2)^2
\]
\[A \geq 0 \]
\[\langle \psi | A | \psi \rangle = 0 \quad \forall | \psi \rangle \]
\[A = \sum_{n} a_{n} | \phi_{n} \rangle \langle \phi_{n} | \]
\[a_{n} \geq 0 \]
\[\Delta x \Delta p \geq \frac{\hbar}{2} \]
\[C_{x, \rho} = \frac{\langle x | \hat{\rho} + \hat{\rho} x \rangle - \langle x \rangle \langle \hat{\rho} \rangle}{\rho} \]

\(\rho \)
Liouville mechanics with an epistemic restriction

Assume:

The classical uncertainty principle:

The only Liouville distributions that can be prepared are those that satisfy

$$\gamma(\mu) + i\hbar \Sigma \geq 0$$

and that have maximal entropy for a given set of second-order moments.
Quantum mechanics

Uncertainty principle:

\[\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0 \]

\[
\gamma(\hat{\rho}) = 2 \begin{pmatrix}
\Delta^2 x_1 & C_{x_1, p_1} & C_{x_1, p_2} & \cdots \\
C_{p_1, x_1} & \Delta^2 p_1 & C_{p_1, x_2} & C_{p_1, p_2} \\
C_{x_2, x_1} & C_{x_2, p_1} & \Delta^2 x_2 & C_{x_2, p_2} \\
C_{p_2, x_1} & C_{p_2, p_1} & C_{p_2, x_2} & \Delta^2 p_2 \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

\[\Sigma = \begin{pmatrix}
0 & -1 & & \\
1 & 0 & & \\
& & \ddots & \\
\vdots & \vdots & \ddots & \ddots
\end{pmatrix} \]

Liouville mechanics with an epistemic restriction

Uncertainty principle:

\[\gamma(\mu) + i\hbar \Sigma \geq 0 \]

\[
\gamma(\mu) = 2 \begin{pmatrix}
\Delta^2 x_1 & C_{x_1, p_1} & C_{x_1, x_2} & C_{x_1, p_2} & \cdots \\
C_{p_1, x_1} & \Delta^2 p_1 & C_{p_1, x_2} & C_{p_1, p_2} & \cdots \\
C_{x_2, x_1} & C_{x_2, p_1} & \Delta^2 x_2 & C_{x_2, p_2} & \cdots \\
C_{p_2, x_1} & C_{p_2, p_1} & C_{p_2, x_2} & \Delta^2 p_2 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

\[\Sigma = \begin{pmatrix}
0 & -1 & & \\
1 & 0 & & \\
& & \ddots & \\
\vdots & \vdots & \ddots & \ddots
\end{pmatrix} \]
Liouville mechanics with an epistemic restriction

Assume:

The classical uncertainty principle:

The only Liouville distributions that can be prepared are those that satisfy

$$\gamma(\mu) + i\hbar \Sigma \geq 0$$

and that have maximal entropy for a given set of second-order moments.
Liouville mechanics with an epistemic restriction

Assume:

The classical uncertainty principle:

The only Liouville distributions that can be prepared are those that satisfy

\[\gamma(\mu) + i\hbar \Sigma \geq 0 \]

and that have maximal entropy for a given set of second-order moments.

Among valid \(\mu \) with a given \(\gamma \), multi-variate Gaussians maximize the entropy

\[\mu(z) = \frac{1}{(2\pi)^{n/2}|\gamma|^{1/2}} \exp \left(-\frac{1}{2} (z - \langle z \rangle)^T \gamma^{-1} (z - \langle z \rangle) \right) \]
Quantum mechanics

Uncertainty principle:

\[\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0 \]

\[\gamma(\hat{\rho}) = 2 \begin{pmatrix} \Delta^2 x_1 & C_{x_1,p_1} & C_{x_1,x_2} & C_{x_1,p_2} & \cdots \\ C_{p_1,x_1} & \Delta^2 p_1 & C_{p_1,x_2} & C_{p_1,p_2} \\ C_{x_2,x_1} & C_{x_2,p_1} & \Delta^2 x_2 & C_{x_2,p_2} \\ C_{p_2,x_1} & C_{p_2,p_1} & C_{p_2,x_2} & \Delta^2 p_2 \\ \vdots & & & & \end{pmatrix} \]

\[\Sigma = \begin{pmatrix} 0 & -1 & & \cdots \\ 1 & 0 & & \\ & 0 & -1 & \cdots \\ & 1 & 0 & \cdots \\ & & \vdots & \end{pmatrix} \]

\[\Delta^2 x = \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2 \]
Quantum mechanics

Uncertainty principle:
\[\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0 \]

\[\hat{R} = (\hat{x}_1, \hat{p}_1, \hat{x}_2, \hat{p}_2, \ldots) \]
\[\gamma_{ij} = 2(\frac{1}{2}\langle\{R_i, R_j\}\rangle - \langle R_i \rangle \langle R_j \rangle) \]
\[[R_i, R_j] = i\hbar \Sigma_{ij} \]

\[\gamma(\hat{\rho}) = 2\begin{pmatrix} \Delta^2 x_1 & C_{x_1,p_1} & C_{x_1,x_2} & C_{x_1,p_2} & \cdots \\ C_{p_1,x_1} & \Delta^2 p_1 & C_{p_1,x_2} & C_{p_1,p_2} & \cdots \\ C_{x_2,x_1} & C_{x_2,p_1} & \Delta^2 x_2 & C_{x_2,p_2} & \cdots \\ C_{p_2,x_1} & C_{p_2,p_1} & C_{p_2,x_2} & \Delta^2 p_2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

\[\Sigma = \begin{pmatrix} 0 & -1 & \cdots \\ 1 & 0 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \]

\[\Delta^2 x = \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2 \]
\[C_{xx} = \frac{1}{2} (\langle \hat{x} \hat{x} \rangle + \langle \hat{x} \rangle^2) - (\langle \hat{x} \rangle \langle \hat{x} \rangle) \]
Quantum mechanics

Uncertainty principle:

$$\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0$$

$$\gamma(\hat{\rho}) = 2 \left(\begin{array}{cccc} \Delta^2 x_1 & C_{x_1,p_1} & C_{x_1,x_2} & C_{x_1,p_2} & \cdots \\ C_{p_1,x_1} & \Delta^2 p_1 & C_{p_1,x_2} & C_{p_1,p_2} & \cdots \\ C_{x_2,x_1} & C_{x_2,p_1} & \Delta^2 x_2 & C_{x_2,p_2} & \cdots \\ C_{p_2,x_1} & C_{p_2,p_1} & C_{p_2,x_2} & \Delta^2 p_2 & \cdots \\ \vdots & & & & \ddots \end{array} \right)$$

$$\Sigma = \left(\begin{array}{ccc} 0 & -1 & \cdots \\ 1 & 0 & \cdots \\ & & \ddots \end{array} \right)$$

$$\Delta^2 x = \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2$$

$$C_{x_1,x_2} = \frac{1}{2} (\langle \hat{x}_1 \hat{x}_2 \rangle + \langle \hat{x}_2 \hat{x}_1 \rangle) - \langle \hat{x}_1 \rangle \langle \hat{x}_2 \rangle$$

$$\hat{\mathbf{R}} = (\hat{x}_1, \hat{p}_1, \hat{x}_2, \hat{p}_2, \ldots)$$

$$\gamma_{ij} = 2 \left(\frac{1}{2} \langle \{ R_i, R_j \} \rangle - \langle R_i \rangle \langle R_j \rangle \right)$$

$$[R_i, R_j] = i\hbar \Sigma_{ij}$$

$$2\langle (R_i - \langle R_i \rangle)(R_j - \langle R_j \rangle) \rangle$$

$$= 2\langle (R_i R_j) - \langle R_i \rangle \langle R_j \rangle \rangle$$

$$= \langle \{ R_i, R_j \} \rangle + \langle [R_i, R_j] \rangle - 2\langle R_i \rangle \langle R_j \rangle$$

$$= \gamma_{ij} + i\hbar \Sigma_{ij}$$

$$(Y, (\gamma(\hat{\rho}) + i\hbar \Sigma)Y)$$

$$= \sum_{i,j} Y_i^* (\gamma_{ij} + i\hbar \Sigma_{ij}) Y_j$$

$$= 2\sum_i Y_i^* (R_i - \langle R_i \rangle) \sum_j Y_j (R_j - \langle R_j \rangle)$$
Quantum mechanics

Uncertainty principle:

\[\gamma(\hat{\rho}) + i\hbar \Sigma \geq 0 \]

\[
\gamma(\hat{\rho}) = 2 \begin{pmatrix}
\Delta^2 x_1 & C_{x_1,p_1} & C_{x_1,x_2} & C_{x_1,p_2} & \cdots \\
C_{p_1,x_1} & \Delta^2 p_1 & C_{p_1,x_2} & C_{p_1,p_2} & \cdots \\
C_{x_2,x_1} & C_{x_2,p_1} & \Delta^2 x_2 & C_{x_2,p_2} & \cdots \\
C_{p_2,x_1} & C_{p_2,p_1} & C_{p_2,x_2} & \Delta^2 p_2 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

\[
\Sigma = \begin{pmatrix}
0 & -1 & & & \\
1 & 0 & & & \\
0 & -1 & & & \\
1 & 0 & & & \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{pmatrix}
\]

\[\Delta^2 x = \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2 \]

\[C = \frac{1}{2} (\hat{\sigma} \cdot \hat{\sigma} + \hat{\sigma} \cdot \hat{\sigma}) - (\langle \hat{\sigma} \rangle \langle \hat{\sigma} \rangle) \]

\[\hat{R} = (\hat{x}_1, \hat{p}_1, \hat{x}_2, \hat{p}_2, \ldots) \]

\[\gamma_{ij} = 2\left(\frac{1}{2} \langle \{R_i, R_j\} \rangle - \langle R_i \rangle \langle R_j \rangle \right) \]

\[[R_i, R_j] = i\hbar \Sigma_{ij} \]

\[2\langle (R_i - \langle R_i \rangle) (R_j - \langle R_j \rangle) \rangle = 2\langle (R_i R_j) - \langle R_i \rangle \langle R_j \rangle \rangle \]

\[= \langle \{R_i, R_j\} \rangle + \langle [R_i, R_j] \rangle - 2\langle R_i \rangle \langle R_j \rangle \]

\[= \gamma_{ij} + i\hbar \Sigma_{ij} \]

\[(Y, (\gamma(\hat{\rho}) + i\hbar \Sigma) Y) \]

\[= \sum_{i,j} Y_i^* (\gamma_{ij} + i\hbar \Sigma_{ij}) Y_j \]

\[= 2\langle \sum_i Y_i^* (R_i - \langle R_i \rangle) \sum_j Y_j (R_j - \langle R_j \rangle) \rangle \]

\[= 2\langle A_Y^\dagger A_Y \rangle \geq 0 \quad \forall Y \]
Valid epistemic states for a pair of canonical systems

Uncorrelated distributions
\[\mu(x_1, p_1, x_2, p_2) = \mu(x_1, p_1) \mu(x_2, p_2) \]

Correlated distributions
\[\mu(x_1, p_1, x_2, p_2) = \frac{1}{N} \delta(x_1 - x_2) \delta(p_1 + p_2) \]

This corresponds to the entangled state of Einstein, Podolsky and Rosen
\[|\psi\rangle = \int dx_1 \, dx_2 \, \delta(x_1 - x_2) |x_1\rangle |x_2\rangle \]
\[= \int dp_1 \, dp_2 \, \delta(p_1 + p_2) |p_1\rangle |p_2\rangle \]
Valid deterministic transformations

The group of canonical transformations with quadratic Hamiltonian

Only canonical transformations preserve the uncertainty principle
Only quadratic Hamiltonians preserve the gaussianity
Valid measurements

Sets of indicator functions \(\{ \xi_k(x, p) \} \)

\[\xi_k(x, p) = \text{probability of } k \text{ given } (x,p) \]

\[\xi_k(x_1, p_1) \]

\[\mu(x_1, p_1, x_2, p_2) \]
Valid measurements

Sets of indicator functions \(\{ \xi_k(x, p) \} \)

\[\xi_k(x, p) = \text{probability of } k \text{ given } (x, p) \]

\[\xi_k(x_1, p_1) \]

\[\mu(x_1, p_1, x_2, p_2) \]

\[\mu(x_2, p_2) \propto \int dx_1 dp_1 \xi(x_1, p_1) \delta(x_1 - x_2) \delta(p_1 + p_2) \]

\[= \xi(x_2, -p_2) \]

\[\mu(x_2, p_2) \propto \int dx_1 dp_1 \xi(x_1, p_1) \mu(x_1, p_1, x_2, p_2) \]
Valid measurements for one canonical system

\[\xi_k(x, p) \geq 0 \]

\[\sum_k \xi_k(x, p) = 1 \quad \forall x \forall p \]
Measurement-induced transformations

Measure x in a reproducible way
Measurement-induced transformations

Measure x in a reproducible way

"Collapse" = Bayesian updating + uniformly random mixture of translations over p
Note: the evolution is deterministic if the apparatus is treated internally.

Internal apparatus

External apparatus

Measure x

Measure x

Unknown disturbance to p

Interact by: $H_{int} = x_{sys} \cdot p_{app}$

Final x of apparatus reflects initial x of system

Final p of system reflects initial p of apparatus

The position of the internal-external cut doesn’t matter
Note: the evolution is *deterministic* if the apparatus is treated internally

Internal apparatus

External apparatus

Measure x

Prepare x

Unknown disturbance to p

Interact by $H_{int} = x_{sys} p_{app}$

Final x of apparatus reflects initial x of system

Final p of system reflects initial p of apparatus

The position of the internal-external cut doesn’t matter
Non-commutativity of measurements

Prepare $|x\rangle$

Measure X then P

Measure P then X
Note: the evolution is **deterministic** if the apparatus is treated internally.

Internal apparatus

External apparatus

\[
|\psi\rangle = \int dx_1 \, dx_2 \, \delta(x_1 - x_2) |x_1\rangle |x_2\rangle \\
= \int dp_1 \, dp_2 \, \delta(p_1 + p_2) |p_1\rangle |p_2\rangle
\]

On particle 1, measure either X or P.
Outcomes for measurements of X or P on particle 2 become certain.
The EPR experiment

\[|\psi\rangle = \int dx_1 \, dx_2 \, \delta(x_1 - x_2) |x_1\rangle |x_2\rangle \]

\[= \int dp_1 \, dp_2 \, \delta(p_1 + p_2) |p_1\rangle |p_2\rangle \]

On particle 1, measure either X or P
Outcomes for measurements of X or P on particle 2 become certain
\[
\mu(x_1, p_1, x_2, p_2) = \frac{1}{N} \delta(x_1 - x_2) \delta(p_1 + p_2)
\]

\[
\mu(x_2, p_2) = \frac{1}{N}
\]

Initially A is completely ignorant of 2

If A measures x on 1, she infers x of 2

If A measures p on 1, she infers p of 2

A's decision does not affect the reality at 2, the x and p were already elements of reality.
The Wigner representation

Weyl operators \(\hat{w}(u, v) = \exp(-iv\hat{x} - iu\hat{p}) \)
The Wigner representation

Weyl operators \(\hat{w}(u, v) = \exp(-iv\hat{x} - iu\hat{p}) \)

Point operators \(\hat{A}(x, p) = \frac{1}{(2\pi)^2} \int \! du \! dv \exp(ivx + iup)\hat{w}(u, v) \)
The Wigner representation

Weyl operators \(\hat{w}(u, v) = \exp(-iv\hat{x} - iu\hat{p}) \)

Point operators \(\hat{A}(x, p) = \frac{1}{(2\pi)^2} \int du dv \exp(ivx + iup)\hat{w}(u, v) \)

Wigner representation \(W_\rho(x, p) = \text{Tr}[\hat{\rho}\hat{A}(x, p)] \)
The Wigner representation

Weyl operators \[\hat{w}(u, v) = \exp(-iv\hat{x} - iu\hat{p}) \]

Point operators \[\hat{A}(x, p) = \frac{1}{(2\pi)^2} \int \! du \! dv \exp(ivx + iup)\hat{w}(u, v) \]

Wigner representation

\[W_\rho(x, p) = \text{Tr}[\hat{\rho}\hat{A}(x, p)] \]

\[W_E(x, p) = \text{Tr}[\hat{E}\hat{A}(x, p)] \]
The Wigner representation

Weyl operators \(\hat{w}(u,v) = \exp(-iv\hat{x} - iu\hat{p}) \)

Point operators \(\hat{A}(x,p) = \frac{1}{(2\pi)^2} \int du dv \exp(ivx + iup)\hat{w}(u,v) \)

Wigner representation
\[
 W_{\hat{\rho}}(x,p) = \text{Tr}[\hat{\rho}\hat{A}(x,p)]
\]
\[
 W_{\hat{E}}(x,p) = \text{Tr}[\hat{E}\hat{A}(x,p)]
\]
\[
 \int dx dp W_{\hat{\rho}}(x,p) W_{\hat{E}}(x,p) = \text{Tr}[\hat{\rho}\hat{E}]
\]
The Wigner representation

Weyl operators \[\hat{w}(u, v) = \exp(-iv\hat{x} - iu\hat{p}) \]

Point operators \[\hat{A}(x, p) = \frac{1}{(2\pi)^2} \int dv du \exp(ivx + iup)\hat{w}(u, v) \]

Wigner representation \[W_\hat{\rho}(x, p) = \text{Tr}[\hat{\rho}\hat{A}(x, p)] \]
\[W_{\hat{E}}(x, p) = \text{Tr}[\hat{E}\hat{A}(x, p)] \]
\[\int dx dp W_\hat{\rho}(x, p) W_{\hat{E}}(x, p) = \text{Tr}[\hat{\rho}\hat{E}] \]

This can be generalized \[W_\hat{\rho}(x_1, p_1, x_2, p_2) = \text{Tr}[\hat{\rho}\hat{A}(x_1, p_1) \otimes \hat{A}(x_2, p_2)] \]
Gaussian quantum mechanics

Gaussian state ρ: one that has a Gaussian Wigner rep’n

$$W_\rho(z) = \frac{1}{(2\pi)^{n/2} |\gamma|^{1/2}} \exp \left(-\frac{1}{2} (z - \langle z \rangle)^T \gamma^{-1} (z - \langle z \rangle) \right)$$
Gaussian quantum mechanics

Gaussian state ρ: one that has a Gaussian Wigner rep’n

$$W_{\rho}(z) = \frac{1}{(2\pi)^{n/2}|\gamma|^{1/2}} \exp \left(-\frac{1}{2}(z - \langle z \rangle)^T \gamma^{-1} (z - \langle z \rangle) \right)$$

Note: $\langle \hat{x}^k \hat{p}^l \rangle_\rho = \langle x^k p^l \rangle_{W_{\rho}}$ therefore $\gamma(\hat{\rho}) = \gamma(W_{\rho})$

Therefore, the Wigner rep’n satisfies the classical uncertainty principle
Gaussian quantum mechanics

Gaussian state ρ: one that has a Gaussian Wigner rep’n

$$W_\rho(z) = \frac{1}{(2\pi)^{n/2}|\gamma|^{1/2}} \exp \left(-\frac{1}{2}(z - \langle z \rangle)^T \gamma^{-1} (z - \langle z \rangle) \right)$$

Note: $\langle x^k p^l \rangle_\rho = \langle x^k p^l \rangle_{W_\rho}$ therefore $\gamma(\rho) = \gamma(W_\rho)$

Therefore, the Wigner rep’n satisfies the classical uncertainty principle

Gaussian measurements and transformations: preserve Gaussianity

One can prove

Theorem: Liouville mechanics with an epistemic restriction is empirically equivalent to Gaussian quantum mechanics
Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

Those not arising in a restricted statistical classical theory
Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

- Wave-particle duality
- Noncommutativity
- Entanglement
- Quantized spectra
- Key distribution
- Computational speed-up
- Improvements in metrology

Those not arising in a restricted statistical classical theory

- Collapse
- Teleportation
- No cloning
- Coherent superposition
- Bell inequality violations
- Quantum eraser
- Bell-Kochen-Specker theorem
- Pre and post-selection "paradoxes"
- Particle statistics
Categorizing quantum phenomena

<table>
<thead>
<tr>
<th>Those arising in a restricted statistical classical theory</th>
<th>Those not arising in a restricted statistical classical theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncommutativity</td>
<td>Bell inequality violations</td>
</tr>
<tr>
<td>Entanglement</td>
<td>Computational speed-up</td>
</tr>
<tr>
<td>Collapse</td>
<td>Bell-Kochen-Specker theorem</td>
</tr>
<tr>
<td>Wave-particle duality</td>
<td>Certain aspects of items on the left</td>
</tr>
<tr>
<td>Teleportation</td>
<td>Others...</td>
</tr>
<tr>
<td>No cloning</td>
<td>Others...</td>
</tr>
<tr>
<td>Key distribution</td>
<td>Others...</td>
</tr>
<tr>
<td>Improvements in metrology</td>
<td>Others...</td>
</tr>
<tr>
<td>Quantum eraser</td>
<td>Others...</td>
</tr>
<tr>
<td>Coherent superposition</td>
<td>Others...</td>
</tr>
<tr>
<td>Pre and post-selection “paradoxes”</td>
<td>Others...</td>
</tr>
<tr>
<td>Others...</td>
<td>Others...</td>
</tr>
</tbody>
</table>

Quantized spectra?
Particle statistics?
Others...
Categorizing quantum phenomena

<table>
<thead>
<tr>
<th>Those arising in a restricted statistical classical theory</th>
<th>Those not arising in a restricted statistical classical theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncommutativity</td>
<td>Bell inequality violations</td>
</tr>
<tr>
<td>Entanglement</td>
<td>Computational speed-up</td>
</tr>
<tr>
<td>Collapse</td>
<td>Bell-Kochen-Specker theorem</td>
</tr>
<tr>
<td>Wave-particle duality</td>
<td>Certain aspects of items on the left</td>
</tr>
<tr>
<td>Teleportation</td>
<td>Others…</td>
</tr>
<tr>
<td>No cloning</td>
<td></td>
</tr>
<tr>
<td>Key distribution</td>
<td></td>
</tr>
<tr>
<td>Improvements in metrology</td>
<td></td>
</tr>
<tr>
<td>Quantum eraser</td>
<td></td>
</tr>
<tr>
<td>Coherent superposition</td>
<td></td>
</tr>
<tr>
<td>Pre and post-selection “paradoxes”</td>
<td></td>
</tr>
<tr>
<td>Others…</td>
<td></td>
</tr>
</tbody>
</table>

Quantized spectra?
Particle statistics?
Others