Contextuality
Problems with the traditional definition of noncontextuality:
- applies only to sharp measurements
- applies only to deterministic hidden variable models
- applies only to models of quantum theory
Problems with the traditional definition of noncontextuality:
- applies only to sharp measurements
- applies only to deterministic hidden variable models
- applies only to models of quantum theory

A better notion of noncontextuality would determine
- whether any given theory admits a noncontextual model
- whether any given experimental data can be explained by a noncontextual model
Operational Quantum Mechanics

Preparation P

Measurement M

Density operator ρ

Positive operator-valued measure (POVM) $\{E_k\}$

$$Pr(k|P, M) = \text{Tr}[E_k \rho]$$
General Operational Theories

Preparation P

Element of a convex set \vec{p}

Measurement M

Set of elements of a positive cone $\{\vec{r}_k\}$

$$Pr(k|P, M) = \vec{r}_k \cdot \vec{p}$$

See e.g. L. Hardy, quant-ph/0101012 and J. Barrett, quant-ph/0508211
A realist model of an operational theory

\[
\int \mu_P(\lambda) d\lambda = 1
\]

\[
\mu_P(\lambda)
\]
A realist model of an operational theory

\[\int \mu_P(\lambda) d\lambda = 1 \]

\[0 \leq \xi_{M,k} \leq 1 \]

\[\sum_k \xi_{M,k}(\lambda) = 1 \text{ for all } \lambda \]

\[\xi_{M,1}(\lambda) \]

\[\xi_{M,2}(\lambda) \]

\[\xi_{M,3}(\lambda) \]
A realist model of an operational theory

\[\int \mu_P(\lambda) d\lambda = 1 \]

\[0 \leq \xi_{M,k} \leq 1 \]

\[\sum_k \xi_{M,k}(\lambda) = 1 \text{ for all } \lambda \]
A realist model of an operational theory

\[\int \mu_P(\lambda) d\lambda = 1 \]

\[0 \leq \xi_{M,k} \leq 1 \]

\[\sum_k \xi_{M,k}(\lambda) = 1 \text{ for all } \lambda \]

\[p(k|P, M) = \int d\lambda \xi_{M,k}(\lambda) \mu_P(\lambda) \]
Generalized definition of noncontextuality:

A realist model of an operational theory is noncontextual if

Operational equivalence of two experimental procedures \rightarrow Equivalent representations in the HV model
Generalized definition of noncontextuality:

A realist model of an operational theory is noncontextual if

Operational equivalence of two experimental procedures → Equivalent representations in the HV model
Generalized definition of noncontextuality:

A realist model of an operational theory is noncontextual if

Operational equivalence of two experimental procedures \(\rightarrow\) Equivalent representations in the HV model
Operational equivalence classes
Operational equivalence classes
Operational equivalence classes

P is equivalent to P' if

$\forall M \forall k : p(k | P, M) = p(k | P', M)$
Difference of context
Example from quantum theory

Different density op’s
Example from quantum theory

\[I = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1| \]

\[\frac{1}{2} I = \frac{1}{2} |+\rangle \langle +| + \frac{1}{2} |-\rangle \langle -| \]
Example from quantum theory

\[I = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1| \]

\[\frac{1}{2} I = \frac{1}{2} |+\rangle \langle +| + \frac{1}{2} |-\rangle \langle -| \]
Example from quantum theory

\[I = \text{Tr}_B\left[\frac{1}{\sqrt{2}} (|0\rangle |0\rangle + |1\rangle |1\rangle) \right] \]

\[\frac{1}{2} I = \text{Tr}_B\left[\frac{1}{\sqrt{2}} (|0\rangle |+\rangle + |1\rangle |-\rangle) \right] \]
Preparation noncontextual model

$\mu(\lambda)$

λ

$P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9$

$M_1, M_2, M_3, M_4, M_5, M_6, M_7, M_8, M_9, M_{10}$
Preparation noncontextual model

\[\mu(\lambda) \quad \lambda \]
Preparation noncontextual model

\[\mu(\lambda) \]
Definition of preparation noncontextual model:

\[\forall M : p(k|P, M) = p(k|P', M) \]

\[\implies p(\lambda|P) = p(\lambda|P') \]
(a) Some states of a qubit

(b) A preparation noncontextual model of these
(RWS, PRA 75, 032110, 2007)

(c) A preparation contextual model of these
(Kochen-Specker, 1967)

\[
\begin{align*}
\mu_{|0\rangle}(\lambda) &= \frac{1}{2} \mu_{|0\rangle}(\lambda) + \frac{1}{2} \mu_{|1\rangle}(\lambda) \\
\mu_{|+\rangle}(\lambda) &= \frac{1}{2} \mu_{|+\rangle}(\lambda) + \frac{1}{2} \mu_{|-\rangle}(\lambda) \\
\mu_{|-\rangle}(\lambda) &= \frac{1}{2} \mu_{|\rangle}(\lambda) + \frac{1}{2} \mu_{|-\rangle}(\lambda)
\end{align*}
\]
\[
\begin{align*}
&\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2}, 0, 0 \right) \\
&+ \frac{1}{2} \left(0, 0, \frac{1}{2}, \frac{1}{2} \right) = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \\
&\left(\frac{1}{2}, 0, \frac{1}{2}, 0 \right) \\
&\left(0, \frac{1}{2}, 0, \frac{1}{2} \right)
\end{align*}
\]
(a) Some states of a qubit

(b) A preparation noncontextual model of these
(RWS, PRA 75, 032110, 2007)

(c) A preparation contextual model of these
(Kochen-Specker, 1967)
Difference of context
\begin{align*}
\{ |\psi_1\rangle\langle\psi_1|, I - |\psi_1\rangle\langle\psi_1| \} & \quad \{ |\psi_1\rangle\langle\psi_1|, I - |\psi_1\rangle\langle\psi_1| \} \\
I - |\psi_1\rangle\langle\psi_1| & = |\psi_2\rangle\langle\psi_2| + |\psi_3\rangle\langle\psi_3| \\
& = |\psi_2\rangle\langle\psi_2| + |\psi_3\rangle\langle\psi_3| \\
I - |\psi_1\rangle\langle\psi_1| & = |\psi_2\rangle\langle\psi_2| + |\psi_3\rangle\langle\psi_3| \\
\end{align*}
\[\{E, I - E\} \]
\[E = q\frac{n}{4}\langle\frac{n}{4}\rangle + (1 - q)\frac{1}{2}I \]
\[\{E, I - E\} \]
\[E = \frac{1}{2}\ket{0}ra{0} + \frac{1}{2}\ket{+}ra{+} \]
\[
\{E, I - E\} \\
E = q \left| \frac{n}{4} \right\rangle \langle \frac{n}{4} \right| + (1 - q) \frac{1}{2} I
\]
universal noncontextuality
= noncontextuality for preparations and measurements
Preparation-based proof of contextuality

(i.e. of the impossibility of a noncontextual realist model of quantum theory)
Important features of realist models

Let $P \leftrightarrow \mu(\lambda)$

$P' \leftrightarrow \mu'(\lambda)$

Representing one-shot distinguishability:

If P and P' are distinguishable with certainty

then $\mu(\lambda) \mu'(\lambda) = 0$
(a) Some states of a qubit

(b) A preparation noncontextual model of these
(RWS, PRA 75, 032110, 2007)

(c) A preparation contextual model of these
(Kochen-Specker, 1967)
universal noncontextuality
= noncontextuality for preparations and measurements
Preparation-based proof of contextuality

(i.e. of the impossibility of a noncontextual realist model of quantum theory)
universal noncontextuality

= noncontextuality for preparations and measurements
Preparation-based proof of contextuality

(i.e. of the impossibility of a noncontextual realist model of quantum theory)
Important features of realist models

Let $P \leftrightarrow \mu(\lambda)$

$P' \leftrightarrow \mu'(\lambda)$

Representing one-shot distinguishability:

If P and P' are distinguishable with certainty

then $\mu(\lambda) \mu'(\lambda) = 0$
Important features of realist models

Let \(P \leftrightarrow \mu(\lambda) \)
\(P' \leftrightarrow \mu'(\lambda) \)

Representing one-shot distinguishability:
If \(P \) and \(P' \) are distinguishable with certainty
then \(\mu(\lambda) \mu'(\lambda) = 0 \)

Representing convex combination:
If \(P'' = P \) with prob. \(p \) and \(P' \) with prob. \(1 - p \)
Then \(\mu''(\lambda) = p \mu(\lambda) + (1 - p) \mu'(\lambda) \)
\[P(\neg P') = P(\neg P) P(P) + P(\neg P') P(P') = \frac{1}{2} \left(\frac{1}{2}, \frac{1}{2}, 0, 0 \right) + \frac{1}{2} \left(0, 0, \frac{1}{2}, \frac{1}{2} \right) = 1 - P \left(\begin{array}{c}
\frac{1}{2}, 0, \frac{1}{2}, 0 \\
0, \frac{1}{2}, 0, \frac{1}{2}
\end{array} \right) \]
Proof based on finite construction in 2d

\[
\begin{align*}
P_a & \leftrightarrow \psi_a = (1, 0) \\
P_A & \leftrightarrow \psi_A = (0, 1) \\
P_b & \leftrightarrow \psi_b = (1/2, \sqrt{3}/2) \\
P_B & \leftrightarrow \psi_B = (\sqrt{3}/2, -1/2) \\
P_c & \leftrightarrow \psi_c = (1/2, -\sqrt{3}/2) \\
P_C & \leftrightarrow \psi_C = (\sqrt{3}/2, 1/2)
\end{align*}
\]
\[P(NP) p(P) + P(NP') p(P') \cdot \frac{1}{2} \left(\frac{1}{2}, \frac{1}{2}, 0, 0 \right) + \frac{1}{2} \left(0, 0, \frac{1}{2}, \frac{1}{2} \right) = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) \]

\[1 - P \left(\frac{1}{2}, 0, \frac{1}{2}, 0 \right) = \left(0, \frac{1}{2}, 0, \frac{1}{2} \right) \]

\[14 \times 4 / 14^4 = 0 \]
Proof based on finite construction in 2d

\[P_a \leftrightarrow \sigma_a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \]
\[P_A \leftrightarrow \sigma_A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \]
\[P_b \leftrightarrow \sigma_b = \begin{pmatrix} \frac{3}{4} & \frac{1}{4}\sqrt{3} \\ -\frac{1}{4}\sqrt{3} & \frac{1}{4} \end{pmatrix} \]
\[P_B \leftrightarrow \sigma_B = \begin{pmatrix} \frac{1}{4}\sqrt{3} & \frac{1}{4} \\ -\frac{1}{4}\sqrt{3} & \frac{1}{4} \end{pmatrix} \]
\[P_c \leftrightarrow \sigma_c = \begin{pmatrix} \frac{3}{4} & -\frac{1}{4}\sqrt{3} \\ \frac{3}{4} & -\frac{1}{4}\sqrt{3} \end{pmatrix} \]
\[P_C \leftrightarrow \sigma_C = \begin{pmatrix} \frac{3}{4} & \frac{1}{4}\sqrt{3} \\ \frac{3}{4} & \frac{1}{4}\sqrt{3} \end{pmatrix} \]

\[\sigma_a \sigma_A = 0 \]
\[\sigma_b \sigma_B = 0 \]
\[\sigma_c \sigma_C = 0 \]

\(P_a \) and \(P_A \) are distinguishable with certainty
\(P_b \) and \(P_B \) are distinguishable with certainty
\(P_c \) and \(P_C \) are distinguishable with certainty

\[\mu_a(\lambda) \mu_A(\lambda) = 0 \]
\[\rightarrow \mu_b(\lambda) \mu_B(\lambda) = 0 \]
\[P_{aA} \equiv P_a \text{ and } P_A \text{ with prob. } 1/2 \text{ each} \]
\[P_{bB} \equiv P_b \text{ and } P_B \text{ with prob. } 1/2 \text{ each} \]
\[P_{cC} \equiv P_c \text{ and } P_C \text{ with prob. } 1/2 \text{ each} \]
\[P_{abc} \equiv P_a, P_b \text{ and } P_c \text{ with prob. } 1/3 \text{ each} \]
\[P_{ABC} \equiv P_A, P_B \text{ and } P_C \text{ with prob. } 1/3 \text{ each} \]
\[P_{aA} \equiv P_a \text{ and } P_A \text{ with prob. } 1/2 \text{ each} \]
\[P_{bB} \equiv P_b \text{ and } P_B \text{ with prob. } 1/2 \text{ each} \]
\[P_{cC} \equiv P_c \text{ and } P_C \text{ with prob. } 1/2 \text{ each} \]
\[P_{abc} \equiv P_a, P_b \text{ and } P_c \text{ with prob. } 1/3 \text{ each} \]
\[P_{ABC} \equiv P_A, P_B \text{ and } P_C \text{ with prob. } 1/3 \text{ each} \]

\[\mu_{aA}(\lambda) = \frac{1}{2} \mu_a(\lambda) + \frac{1}{2} \mu_A(\lambda) \]
\[\mu_{bB}(\lambda) = \frac{1}{2} \mu_b(\lambda) + \frac{1}{2} \mu_B(\lambda) \]
\[\mu_{cC}(\lambda) = \frac{1}{2} \mu_c(\lambda) + \frac{1}{2} \mu_C(\lambda) \]
\[\mu_{abc}(\lambda) = \frac{1}{3} \mu_a(\lambda) + \frac{1}{3} \mu_b(\lambda) + \frac{1}{3} \mu_c(\lambda) \]
\[\mu_{ABC}(\lambda) = \frac{1}{3} \mu_A(\lambda) + \frac{1}{3} \mu_B(\lambda) + \frac{1}{3} \mu_C(\lambda) \]
\[
I/2 = \frac{1}{2} \sigma_a + \frac{1}{2} \sigma_A \\
= \frac{1}{2} \sigma_b + \frac{1}{2} \sigma_B \\
= \frac{1}{2} \sigma_c + \frac{1}{2} \sigma_C \\
= \frac{1}{3} \sigma_a + \frac{1}{3} \sigma_b + \frac{1}{3} \sigma_c \\
= \frac{1}{3} \sigma_A + \frac{1}{3} \sigma_B + \frac{1}{3} \sigma_C.
\]
\begin{align*}
I/2 &= \frac{1}{2} \sigma_a + \frac{1}{2} \sigma_A \\
&= \frac{1}{2} \sigma_b + \frac{1}{2} \sigma_B \\
&= \frac{1}{2} \sigma_c + \frac{1}{2} \sigma_C \\
&= \frac{1}{3} \sigma_a + \frac{1}{3} \sigma_b + \frac{1}{3} \sigma_c \\
&= \frac{1}{3} \sigma_A + \frac{1}{3} \sigma_B + \frac{1}{3} \sigma_C.
\end{align*}

P_{aA} \approx P_{bB} \approx P_{cC} \\
\approx P_{abc} \approx P_{ABC}
\[I/2 = \frac{1}{2} \sigma_a + \frac{1}{2} \sigma_A \]
\[= \frac{1}{2} \sigma_b + \frac{1}{2} \sigma_B \]
\[= \frac{1}{2} \sigma_c + \frac{1}{2} \sigma_C \]
\[= \frac{1}{3} \sigma_a + \frac{1}{3} \sigma_b + \frac{1}{3} \sigma_c \]
\[= \frac{1}{3} \sigma_A + \frac{1}{3} \sigma_B + \frac{1}{3} \sigma_C. \]

\[P_{aA} \sim P_{bB} \sim P_{cC} \]
\[\sim P_{abc} \sim P_{ABC} \]

By preparation noncontextuality

\[\mu_{aA}(\lambda) = \mu_{bB}(\lambda) = \mu_{cC}(\lambda) \]
\[= \mu_{abc}(\lambda) = \mu_{ABC}(\lambda) \]
\[\equiv \nu(\lambda) \]
\[P_{aA} \equiv P_a \text{ and } P_A \text{ with prob. } \frac{1}{2} \text{ each} \]

\[P_{bB} \equiv P_b \text{ and } P_B \text{ with prob. } \frac{1}{2} \text{ each} \]

\[P_{cC} \equiv P_c \text{ and } P_C \text{ with prob. } \frac{1}{2} \text{ each} \]

\[P_{abc} \equiv P_a, P_b \text{ and } P_c \text{ with prob. } \frac{1}{3} \text{ each} \]

\[P_{ABC} \equiv P_A, P_B \text{ and } P_C \text{ with prob. } \frac{1}{3} \text{ each} \]

\[\mu_{aA}(\lambda) = \frac{1}{2} \mu_a(\lambda) + \frac{1}{2} \mu_A(\lambda) \]

\[\mu_{bB}(\lambda) = \frac{1}{2} \mu_b(\lambda) + \frac{1}{2} \mu_B(\lambda) \]

\[\mu_{cC}(\lambda) = \frac{1}{2} \mu_c(\lambda) + \frac{1}{2} \mu_C(\lambda) \]

\[\mu_{abc}(\lambda) = \frac{1}{3} \mu_a(\lambda) + \frac{1}{3} \mu_b(\lambda) + \frac{1}{3} \mu_c(\lambda) \]

\[\mu_{ABC}(\lambda) = \frac{1}{3} \mu_A(\lambda) + \frac{1}{3} \mu_B(\lambda) + \frac{1}{3} \mu_C(\lambda) \]
Our task is to find
\[\mu_a(\lambda), \mu_A(\lambda), \mu_b(\lambda), \]
\[\mu_B(\lambda), \mu_c(\lambda), \mu_C(\lambda), \]
and \(\nu(\lambda) \) such that

\[\mu_a(\lambda) \mu_A(\lambda) = 0 \]
\[\mu_b(\lambda) \mu_B(\lambda) = 0 \]
\[\mu_c(\lambda) \mu_C(\lambda) = 0 \]

\[\nu(\lambda) = \frac{1}{2} \mu_a(\lambda) + \frac{1}{2} \mu_A(\lambda) \]
\[= \frac{1}{2} \mu_b(\lambda) + \frac{1}{2} \mu_B(\lambda) \]
\[= \frac{1}{2} \mu_c(\lambda) + \frac{1}{2} \mu_C(\lambda) \]
\[= \frac{1}{3} \mu_a(\lambda) + \frac{1}{3} \mu_b(\lambda) + \frac{1}{3} \mu_c(\lambda) \]
\[= \frac{1}{3} \mu_A(\lambda) + \frac{1}{3} \mu_B(\lambda) + \frac{1}{3} \mu_C(\lambda). \]
Our task is to find
\[\mu_a(\lambda), \mu_A(\lambda), \mu_b(\lambda), \mu_B(\lambda), \mu_c(\lambda), \mu_C(\lambda), \]
and \(\nu(\lambda) \) such that
\[\mu_a(\lambda) \mu_A(\lambda) = 0 \]
\[\mu_b(\lambda) \mu_B(\lambda) = 0 \]
\[\mu_c(\lambda) \mu_C(\lambda) = 0 \]

\[\nu(\lambda) = \frac{1}{2} \mu_a(\lambda) + \frac{1}{2} \mu_A(\lambda) \]
\[= \frac{1}{2} \mu_b(\lambda) + \frac{1}{2} \mu_B(\lambda) \]
\[= \frac{1}{2} \mu_c(\lambda) + \frac{1}{2} \mu_C(\lambda) \]
\[= \frac{1}{3} \mu_a(\lambda) + \frac{1}{3} \mu_b(\lambda) + \frac{1}{3} \mu_c(\lambda) \]
\[= \frac{1}{3} \mu_A(\lambda) + \frac{1}{3} \mu_B(\lambda) + \frac{1}{3} \mu_C(\lambda). \]

i.e., paralleling the quantum structure:
\[\sigma_a \sigma_A = 0 \]
\[\sigma_b \sigma_B = 0 \]
\[\sigma_c \sigma_C = 0 \]

\[I/2 = \frac{1}{2} \sigma_a + \frac{1}{2} \sigma_A \]
\[= \frac{1}{2} \sigma_b + \frac{1}{2} \sigma_B \]
\[= \frac{1}{2} \sigma_c + \frac{1}{2} \sigma_C \]
\[= \frac{1}{3} \sigma_a + \frac{1}{3} \sigma_b + \frac{1}{3} \sigma_c \]
\[= \frac{1}{3} \sigma_A + \frac{1}{3} \sigma_B + \frac{1}{3} \sigma_C. \]
Our task is to find
\[\mu_a(\lambda), \mu_A(\lambda), \mu_b(\lambda), \]
\[\mu_B(\lambda), \mu_c(\lambda), \mu_C(\lambda), \]
and \(\nu(\lambda) \) such that

\[\mu_a(\lambda) \mu_A(\lambda) = 0 \]
\[\mu_b(\lambda) \mu_B(\lambda) = 0 \]
\[\mu_c(\lambda) \mu_C(\lambda) = 0 \]

From decompositions (1)-(3), for \(\lambda = \lambda' \)

\[\mu_a(\lambda') = 0 \text{ or } 2\nu(\lambda') \]
\[\mu_b(\lambda') = 0 \text{ or } 2\nu(\lambda') \]
\[\mu_c(\lambda') = 0 \text{ or } 2\nu(\lambda') \]

\[\nu(\lambda) = \frac{1}{2} \mu_a(\lambda) + \frac{1}{2} \mu_A(\lambda) \]
\[= \frac{1}{2} \mu_b(\lambda) + \frac{1}{2} \mu_B(\lambda) \]
\[= \frac{1}{2} \mu_c(\lambda) + \frac{1}{2} \mu_C(\lambda) \]
\[= \frac{1}{3} \mu_a(\lambda) + \frac{1}{3} \mu_b(\lambda) + \frac{1}{3} \mu_c(\lambda) \]
\[= \frac{1}{3} \mu_A(\lambda) + \frac{1}{3} \mu_B(\lambda) + \frac{1}{3} \mu_C(\lambda) \]
Our task is to find
\(\mu_a(\lambda), \mu_A(\lambda), \mu_b(\lambda), \mu_B(\lambda), \mu_c(\lambda), \mu_C(\lambda), \)
and \(\nu(\lambda) \) such that

\[
\begin{align*}
\mu_a(\lambda) \mu_A(\lambda) &= 0 \\
\mu_b(\lambda) \mu_B(\lambda) &= 0 \\
\mu_c(\lambda) \mu_C(\lambda) &= 0
\end{align*}
\]

From decompositions (1)-(3), for \(\lambda = \lambda' \)

\[
\begin{align*}
\mu_a(\lambda') &= 0 \text{ or } 2\nu(\lambda') \\
\mu_b(\lambda') &= 0 \text{ or } 2\nu(\lambda') \\
\mu_c(\lambda') &= 0 \text{ or } 2\nu(\lambda')
\end{align*}
\]

But then the RHS of decomposition (4) is

\[
0, \frac{2}{3}\nu(\lambda'), \frac{4}{3}\nu(\lambda'), 2\nu(\lambda') \\
\neq \nu(\lambda')
\]

for \(\lambda' \) such that \(\nu(\lambda') \neq 0 \)

CONTRADICTION
Measurement contextuality

New definition versus traditional definition
How to formulate the traditional notion of noncontextuality:

\[|\psi_1\rangle \quad |\psi_2\rangle \quad |\psi_3\rangle \quad \chi_1(\lambda) \quad \chi_2(\lambda) \quad \chi_3(\lambda) \]

\[|\psi'_1\rangle \quad |\psi'_2\rangle \quad |\psi'_3\rangle \quad \chi'_1(\lambda) \quad \chi'_2(\lambda) \quad \chi'_3(\lambda) \]
This is equivalent to assuming:

\[
\{ |\psi_1\rangle\langle\psi_1|, \ I \ - \ |\psi_1\rangle\langle\psi_1| \}
\]
How to formulate the traditional notion of noncontextuality:

\[|\psi_1\rangle \quad |\psi_2\rangle \quad |\psi_3\rangle \quad \Leftrightarrow \quad \chi_1(\lambda) \quad \Box \quad \lambda \\
\chi_2(\lambda) \\
\chi_3(\lambda) \]

\[|\psi_1\rangle \quad |\psi'_2\rangle \quad |\psi'_3\rangle \quad \Leftrightarrow \quad \chi_1(\lambda) \quad \Box \quad \lambda \\
\chi'_2(\lambda) \\
\chi'_3(\lambda) \]
This is equivalent to assuming:

\[
\{ |\psi_1\rangle\langle \psi_1|, I - |\psi_1\rangle\langle \psi_1| \}
\]
But recall that the most general representation was

\[\{P_k\} \xrightarrow{M} \xi_{P_1}(\lambda) \xrightarrow{\lambda} \xi_{P_2}(\lambda) \xrightarrow{\lambda} \xi_{P_3}(\lambda) \xrightarrow{\lambda}\]

Therefore:

traditional notion of noncontextuality = revised notion of noncontextuality for sharp measurements
and
outcome determinism for sharp measurements
This is equivalent to assuming:

\[\{ |\psi_1\rangle \langle \psi_1|, I - |\psi_1\rangle \langle \psi_1| \} \]

measure \[|\psi_2\rangle \text{ and } |\psi_3\rangle \]

coarse-grain \[\chi_1(\lambda) \] and \[\chi_{-1}(\lambda) \]

\[\{ |\psi_1\rangle \langle \psi_1|, I - |\psi_1\rangle \langle \psi_1| \} \]

measure \[|\psi_2\rangle \text{ and } |\psi_3\rangle \]

coarse-grain \[\chi_1(\lambda) \] and \[\chi_{-1}(\lambda) \]
But recall that the most general representation was

\[\{ P_k \} \rightarrow M \leftrightarrow \xi_{P_1}(\lambda) \rightarrow \lambda \]

\[\xi_{P_2}(\lambda) \rightarrow \lambda \]

\[\xi_{P_3}(\lambda) \rightarrow \lambda \]

Therefore:

traditional notion of noncontextuality = revised notion of noncontextuality for sharp measurements

and

outcome determinism for sharp measurements
So, the new definition of noncontextuality is not simply a generalization of the traditional notion.

For sharp measurements, it is a revision of the traditional notion.
Local determinism:
We ask: Does the outcome depend on space-like separated events (in addition to local settings and λ)?

Bell’s local causality:
We ask: Does the probability of the outcome depend on space-like separated events (in addition to local settings and λ)?
Local determinism:
We ask: Does the outcome depend on space-like separated events (in addition to local settings and λ)?

Bell’s local causality:
We ask: Does the probability of the outcome depend on space-like separated events (in addition to local settings and λ)?

Traditional notion of measurement noncontextuality:
We ask: Does the outcome depend on the measurement context (in addition to the observable and λ)?

The revised notion of measurement noncontextuality:
We ask: Does the probability of the outcome depend on the measurement context (in addition to the observable and λ)?
Local determinism:
We ask: Does the outcome depend on space-like separated events (in addition to local settings and λ)?

Bell’s local causality:
We ask: Does the probability of the outcome depend on space-like separated events (in addition to local settings and λ)?

Traditional notion of measurement noncontextuality:
We ask: Does the outcome depend on the measurement context (in addition to the observable and λ)?

The revised notion of measurement noncontextuality:
We ask: Does the probability of the outcome depend on the measurement context (in addition to the observable and λ)?
traditional notion of noncontextuality = revised notion of noncontextuality for sharp measurements and outcome determinism for sharp measurements

No-go theorems for previous notion are not necessarily no-go theorems for the new notion!

In face of contradiction, could give up ODSM
However, one can prove that

- preparation noncontextuality → outcome determinism for sharp measurements

Therefore:

- measurement noncontextuality
- and
- preparation noncontextuality

and

- measurement noncontextuality
- and
- outcome determinism for sharp measurements
However, one can prove that

preparation noncontextuality \rightarrow outcome determinism for sharp measurements

Therefore:

measurement noncontextuality and preparation noncontextuality \rightarrow measurement noncontextuality and outcome determinism for sharp measurements
However, one can prove that

preparation noncontextuality → outcome determinism for sharp measurements

Therefore:

measurement noncontextuality and preparation noncontextuality → Traditional notion of noncontextuality
However, one can prove that

preparation noncontextuality → outcome determinism for sharp measurements

Therefore:

measurement noncontextuality and preparation noncontextuality → Traditional notion of noncontextuality

no-go theorems for the traditional notion of noncontextuality can be salvaged as no-go theorems for the generalized notion
Measurement-based proof of contextuality

(i.e. of the impossibility of a noncontextual realist model of quantum theory)
Proof of contextuality for unsharp measurements in 2d

\[M_a \leftrightarrow \{ \Pi_a, \Pi_A \} \]
\[M_b \leftrightarrow \{ \Pi_b, \Pi_B \} \]
\[M_c \leftrightarrow \{ \Pi_c, \Pi_C \} \]

\(\Pi_x \) projects onto \(\psi_x \)

\[\Pi_a + \Pi_A = I \]
\[\Pi_b + \Pi_B = I \]
\[\Pi_c + \Pi_C = I \]

\[\Pi_a \Pi_A = 0 \]
\[\Pi_b \Pi_B = 0 \]
\[\Pi_c \Pi_C = 0 \]
Proof of contextuality for unsharp measurements in 2d

\[M_a \leftrightarrow \{ \Pi_a, \Pi_A \} \]
\[M_b \leftrightarrow \{ \Pi_b, \Pi_B \} \]
\[M_c \leftrightarrow \{ \Pi_c, \Pi_C \} \]

\(\Pi_x \) projects onto \(\psi_x \)

\[\Pi_a + \Pi_A = I \]
\[\Pi_b + \Pi_B = I \]
\[\Pi_c + \Pi_C = I \]

\[\Pi_a \Pi_A = 0 \]
\[\Pi_b \Pi_B = 0 \]
\[\Pi_c \Pi_C = 0 \]

\[M_a \leftrightarrow \{ \chi_a(\lambda), \chi_A(\lambda) \} \]
\[M_b \leftrightarrow \{ \chi_b(\lambda), \chi_B(\lambda) \} \]
\[M_c \leftrightarrow \{ \chi_c(\lambda), \chi_C(\lambda) \} \]

By definition

\[\chi_a(\lambda) + \chi_A(\lambda) = 1 \]
\[\chi_b(\lambda) + \chi_B(\lambda) = 1 \]
\[\chi_c(\lambda) + \chi_C(\lambda) = 1 \]
Proof of contextuality for unsharp measurements in 2d

\[M_a \leftrightarrow \{\pi_a, \pi_A\} \]
\[M_b \leftrightarrow \{\pi_b, \pi_B\} \]
\[M_c \leftrightarrow \{\pi_c, \pi_C\} \]

\[\pi_x \text{ projects onto } \psi_x \]

\[\pi_a + \pi_A = I \]
\[\pi_b + \pi_B = I \]
\[\pi_c + \pi_C = I \]

\[\pi_a \pi_A = 0 \]
\[\pi_b \pi_B = 0 \]
\[\pi_c \pi_C = 0 \]

\[M_a \leftrightarrow \{\chi_a(\lambda), \chi_A(\lambda)\} \]
\[M_b \leftrightarrow \{\chi_b(\lambda), \chi_B(\lambda)\} \]
\[M_c \leftrightarrow \{\chi_c(\lambda), \chi_C(\lambda)\} \]

By definition

\[\chi_a(\lambda) + \chi_A(\lambda) = 1 \]
\[\chi_b(\lambda) + \chi_B(\lambda) = 1 \]
\[\chi_c(\lambda) + \chi_C(\lambda) = 1 \]
Proof of contextuality for unsharp measurements in 2d

\[M_a \leftrightarrow \{ \Pi_a, \Pi_A \} \]
\[M_b \leftrightarrow \{ \Pi_b, \Pi_B \} \]
\[M_c \leftrightarrow \{ \Pi_c, \Pi_C \} \]

\(\Pi_x \) projects onto \(\psi_x \)

\[\Pi_a + \Pi_A = I \]
\[\Pi_b + \Pi_B = I \]
\[\Pi_c + \Pi_C = I \]

By definition

\[\chi_a(\lambda) + \chi_A(\lambda) = 1 \]
\[\chi_b(\lambda) + \chi_B(\lambda) = 1 \]
\[\chi_c(\lambda) + \chi_C(\lambda) = 1 \]

By outcome determinism for sharp measurements

\[\chi_a(\lambda)\chi_A(\lambda) = 0 \]
\[\chi_b(\lambda)\chi_B(\lambda) = 0 \]
\[\chi_c(\lambda)\chi_C(\lambda) = 0 \]

Thus, \(\{ \chi(\lambda), \chi_V(\lambda) \} \)
M ≡ implement one of M_a, M_b and M_c with prob. 1/3 each, register only whether first or second outcome occurred
\(M \equiv \text{implement one of } M_a, M_b \text{ and } M_c \text{ with prob. } 1/3 \text{ each, register only whether first or second outcome occurred} \)

\[
M \leftrightarrow \left\{ \frac{1}{3} \Pi_a + \frac{1}{3} \Pi_b + \frac{1}{3} \Pi_c, \frac{1}{3} \Pi_A + \frac{1}{3} \Pi_B + \frac{1}{3} \Pi_C \right\}
\]
M ≡ implement one of M_a, M_b and M_c with prob. 1/3 each, register only whether first or second outcome occurred

\[M \leftrightarrow \left\{ \frac{1}{3} \pi_a + \frac{1}{3} \pi_b + \frac{1}{3} \pi_c, \frac{1}{3} \pi_A + \frac{1}{3} \pi_B + \frac{1}{3} \pi_C \right\} \]

\[M \leftrightarrow \left\{ \frac{1}{3} \chi_a(\lambda) + \frac{1}{3} \chi_b(\lambda) + \frac{1}{3} \chi_c(\lambda), \frac{1}{3} \chi_A(\lambda) + \frac{1}{3} \chi_B(\lambda) + \frac{1}{3} \chi_C(\lambda) \right\} \]
Proof of contextuality for unsharp measurements in 2d

\[\text{M}_a \leftrightarrow \{\Pi_a, \Pi_A\} \]
\[\text{M}_b \leftrightarrow \{\Pi_b, \Pi_B\} \]
\[\text{M}_c \leftrightarrow \{\Pi_c, \Pi_C\} \]

\(\Pi_x \) projects onto \(\psi_x \)

\[\Pi_a + \Pi_A = I \]
\[\Pi_b + \Pi_B = I \]
\[\Pi_c + \Pi_C = I \]

\[\Pi_a \Pi_A = 0 \]
\[\Pi_b \Pi_B = 0 \]
\[\Pi_c \Pi_C = 0 \]

\[\text{M}_a \leftrightarrow \{\chi_a(\lambda), \chi_A(\lambda)\} \]
\[\text{M}_b \leftrightarrow \{\chi_b(\lambda), \chi_B(\lambda)\} \]
\[\text{M}_c \leftrightarrow \{\chi_c(\lambda), \chi_C(\lambda)\} \]

By definition

\[\chi_a(\lambda) + \chi_A(\lambda) = 1 \]
\[\chi_b(\lambda) + \chi_B(\lambda) = 1 \]
\[\chi_c(\lambda) + \chi_C(\lambda) = 1 \]
M ≡ implement one of \(M_a, M_b, \) and \(M_c \) with prob. 1/3 each, register only whether first or second outcome occurred

\[
M \leftrightarrow \left\{ \frac{1}{3} \pi_a + \frac{1}{3} \pi_b + \frac{1}{3} \pi_c, \frac{1}{3} \pi_A + \frac{1}{3} \pi_B + \frac{1}{3} \pi_C \right\}
\]

\[
M \leftrightarrow \left\{ \frac{1}{3} \chi_a(\lambda) + \frac{1}{3} \chi_b(\lambda) + \frac{1}{3} \chi_c(\lambda), \frac{1}{3} \chi_A(\lambda) + \frac{1}{3} \chi_B(\lambda) + \frac{1}{3} \chi_C(\lambda) \right\}
\]
M ≡ implement one of M_a, M_b and M_c with prob. 1/3 each, register only whether first or second outcome occurred

\[
M \leftrightarrow \left\{ \frac{1}{3} \Pi_a + \frac{1}{3} \Pi_b + \frac{1}{3} \Pi_c, \frac{1}{3} \Pi_A + \frac{1}{3} \Pi_B + \frac{1}{3} \Pi_C \right\} = \left\{ \frac{1}{2} I, \frac{1}{2} I \right\}
\]

\[
M \leftrightarrow \left\{ \frac{1}{3} \chi_a(\lambda) + \frac{1}{3} \chi_b(\lambda) + \frac{1}{3} \chi_c(\lambda), \frac{1}{3} \chi_A(\lambda) + \frac{1}{3} \chi_B(\lambda) + \frac{1}{3} \chi_C(\lambda) \right\}
\]
M \equiv \text{implement one of } M_a, M_b \text{ and } M_c \text{ with prob. } 1/3 \text{ each, register only whether first or second outcome occurred}

\[M \leftrightarrow \left\{ \frac{1}{3} \Pi_a + \frac{1}{3} \Pi_b + \frac{1}{3} \Pi_c, \frac{1}{3} \Pi_A + \frac{1}{3} \Pi_B + \frac{1}{3} \Pi_C \right\} = \left\{ \frac{1}{2} I, \frac{1}{2} I \right\} \]

\[M \leftrightarrow \left\{ \frac{1}{3} \chi_a(\lambda) + \frac{1}{3} \chi_b(\lambda) + \frac{1}{3} \chi_c(\lambda), \frac{1}{3} \chi_A(\lambda) + \frac{1}{3} \chi_B(\lambda) + \frac{1}{3} \chi_C(\lambda) \right\} \]

\tilde{M} \equiv \text{ignore the system, flip a fair coin}

\[\tilde{M} \leftrightarrow \left\{ \frac{1}{2} I, \frac{1}{2} I \right\} \]
M \equiv \text{implement one of } M_a, M_b \text{ and } M_c \text{ with prob. } 1/3 \text{ each, register only whether first or second outcome occurred}

\begin{align*}
M & \leftrightarrow \left\{ \frac{1}{3} \Pi_a + \frac{1}{3} \Pi_b + \frac{1}{3} \Pi_c, \frac{1}{3} \Pi_A + \frac{1}{3} \Pi_B + \frac{1}{3} \Pi_C \right\} = \left\{ \frac{1}{2} I, \frac{1}{2} I \right\} \\
\tilde{M} & \leftrightarrow \left\{ \frac{1}{3} \chi_a(\lambda) + \frac{1}{3} \chi_b(\lambda) + \frac{1}{3} \chi_c(\lambda), \frac{1}{3} \chi_A(\lambda) + \frac{1}{3} \chi_B(\lambda) + \frac{1}{3} \chi_C(\lambda) \right\}
\end{align*}

\tilde{M} \equiv \text{ignore the system, flip a fair coin}

\begin{align*}
\tilde{M} & \leftrightarrow \left\{ \frac{1}{2} I, \frac{1}{2} I \right\} \\
\tilde{\tilde{M}} & \leftrightarrow \left\{ \frac{1}{2}, \frac{1}{2} \right\}
\end{align*}

By the assumption of \textbf{measurement noncontextuality}

\begin{align*}
M \sim \tilde{\tilde{M}} & \rightarrow \left\{ \frac{1}{3} \chi_a + \frac{1}{3} \chi_b + \frac{1}{3} \chi_c, \frac{1}{3} \chi_A + \frac{1}{3} \chi_B + \frac{1}{3} \chi_C \right\} = \left\{ \frac{1}{2}, \frac{1}{2} \right\}
\end{align*}
M ≡ implement one of M_a, M_b and M_c with prob. 1/3 each, register only whether first or second outcome occurred

\[M \leftrightarrow \{ \frac{1}{3} \eta_a + \frac{1}{3} \eta_b + \frac{1}{3} \eta_c, \frac{1}{3} \eta_A + \frac{1}{3} \eta_B + \frac{1}{3} \eta_C \} = \{ \frac{1}{2} I, \frac{1}{2} I \} \]

\[M \leftrightarrow \{ \frac{1}{3} \chi_a(\lambda) + \frac{1}{3} \chi_b(\lambda) + \frac{1}{3} \chi_c(\lambda), \frac{1}{3} \chi_A(\lambda) + \frac{1}{3} \chi_B(\lambda) + \frac{1}{3} \chi_C(\lambda) \} \]

\(\tilde{M} \equiv \) ignore the system, flip a fair coin

\[\tilde{M} \leftrightarrow \{ \frac{1}{2} I, \frac{1}{2} I \} \]

\[\tilde{\tilde{M}} \leftrightarrow \{ \frac{1}{2}, \frac{1}{2} \} \]

By the assumption of measurement noncontextuality

\[M \simeq \tilde{\tilde{M}} \rightarrow \{ \frac{1}{3} \chi_a + \frac{1}{3} \chi_b + \frac{1}{3} \chi_c, \frac{1}{3} \chi_A + \frac{1}{3} \chi_B + \frac{1}{3} \chi_C \} = \{ \frac{1}{2}, \frac{1}{2} \} \]

But \(\{0, 1\}, \{\frac{1}{3}, \frac{2}{3}\}, \{1, 0\}, \{\frac{2}{3}, \frac{1}{3}\} \neq \{ \frac{1}{2}, \frac{1}{2} \} \)

CONTRADICTION
Proof of contextuality for unsharp measurements in 2d

\[M_a \leftrightarrow \{ \Pi_a, \Pi_A \} \]
\[M_b \leftrightarrow \{ \Pi_b, \Pi_B \} \]
\[M_c \leftrightarrow \{ \Pi_c, \Pi_C \} \]

\(\Pi_x \) projects onto \(\psi_x \)

\[\Pi_a + \Pi_A = I \]
\[\Pi_b + \Pi_B = I \]
\[\Pi_c + \Pi_C = I \]

By definition

\[\chi_a(\lambda) + \chi_A(\lambda) = 1 \]
\[\chi_b(\lambda) + \chi_B(\lambda) = 1 \]
\[\chi_c(\lambda) + \chi_C(\lambda) = 1 \]

By outcome determinism for sharp measurements

\[\chi_a(\lambda)\chi_A(\lambda) = 0 \]
\[\chi_b(\lambda)\chi_B(\lambda) = 0 \]
\[\chi_c(\lambda)\chi_C(\lambda) = 0 \]

Thus, \(\{ \chi_\lambda, \chi_y(\lambda) \} \)
M \equiv \text{ implement one of } M_a, M_b \text{ and } M_c \text{ with prob. } 1/3 \text{ each, register only whether first or second outcome occurred}

M \leftrightarrow \{ \frac{1}{3} \eta_a + \frac{1}{3} \eta_b + \frac{1}{3} \eta_c, \frac{1}{3} \eta_a + \frac{1}{3} \eta_B + \frac{1}{3} \eta_C \} = \{ \frac{1}{2} I, \frac{1}{2} I \}

M \leftrightarrow \{ \frac{1}{3} \chi_a(\lambda) + \frac{1}{3} \chi_b(\lambda) + \frac{1}{3} \chi_c(\lambda), \frac{1}{3} \chi_a(\lambda) + \frac{1}{3} \chi_B(\lambda) + \frac{1}{3} \chi_C(\lambda) \}

\tilde{M} \equiv \text{ ignore the system, flip a fair coin}

\tilde{M} \leftrightarrow \{ \frac{1}{2} I, \frac{1}{2} I \}

\tilde{M} \leftrightarrow \{ \frac{1}{2}, \frac{1}{2} \}

By the assumption of measurement noncontextuality

M \simeq \tilde{M} \rightarrow \{ \frac{1}{3} \chi_a + \frac{1}{3} \chi_b + \frac{1}{3} \chi_c, \frac{1}{3} \chi_A + \frac{1}{3} \chi_B + \frac{1}{3} \chi_C \} = \{ \frac{1}{2}, \frac{1}{2} \}

But \{0, 1\}, \{\frac{1}{3}, \frac{2}{3}\}, \{1, 0\}, \{\frac{2}{3}, \frac{1}{3}\} \neq \{\frac{1}{2}, \frac{1}{2}\}

\text{CONTRADICTION}
The mystery of contextuality

There is a tension between

1) the dependence of representation on certain details of the experimental procedure

and

2) the independence of outcome statistics on those details of the experimental procedure