Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others
Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others
Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others

Apply orthodox rule for property-ascription not to Ψ, but to an element in a preferred decomposition of Ψ

$$ |\psi(t)\rangle = \sum_i c_i |\chi_i(t)\rangle $$
Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others

Apply orthodox rule for property-ascription not to Ψ, but to an element in a preferred decomposition of Ψ

$$|\psi(t)\rangle = \sum_i c_i |\chi_i(t)\rangle$$

Supplementary variable: $|\Phi(t)\rangle \in \{|\chi_i(t)\rangle\}$
Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others

Apply orthodox rule for property-ascription not to ψ, but to an element in a preferred decomposition of ψ

$$|\psi(t)\rangle = \sum_i c_i |\chi_i(t)\rangle$$

Supplementary variable: $|\Phi(t)\rangle \in \{ |\chi_i(t)\rangle \}$

Ontic state: $\{ |\psi(t)\rangle, |\Phi(t)\rangle \}$
Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others

Apply orthodox rule for property-ascription not to Ψ, but to an element in a preferred decomposition of Ψ

$$|\psi(t)\rangle = \sum_i c_i |\chi_i(t)\rangle$$

Supplementary variable: $|\Phi(t)\rangle \in \{ |\chi_i(t)\rangle \}$

Ontic state: $\{ |\psi(t)\rangle, |\Phi(t)\rangle \}$

Standard distribution: $Pr(|\Phi(t)\rangle = |\chi_i(t)\rangle) = |c_i|^2$
Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others

Apply orthodox rule for property-ascription not to Ψ, but to an element in a preferred decomposition of Ψ

$$|\psi(t)\rangle = \sum_i c_i |\chi_i(t)\rangle$$

Supplementary variable: $|\Phi(t)\rangle \in \{|\chi_i(t)\rangle\}$

Ontic state: $\{|\psi(t)\rangle, |\Phi(t)\rangle\}$

Standard distribution: $Pr(|\Phi(t)\rangle = |\chi_i(t)\rangle) = |c_i|^2$

Evolution: Schrodinger eq'n for $|\psi(t)\rangle$

Stochastic Markovian master eq'n for $|\Phi(t)\rangle$ that preserves the standard distribution
Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others

Apply orthodox rule for property-ascription not to Ψ, but to an element in a preferred decomposition of Ψ

$$|\psi(t)\rangle = \sum_i c_i |\chi_i(t)\rangle$$

Supplementary variable: $|\Phi(t)\rangle \in \{ |\chi_i(t)\rangle \}$

Ontic state: $\{ |\psi(t)\rangle, |\Phi(t)\rangle \}$

Standard distribution: $Pr(|\Phi(t)\rangle = |\chi_i(t)\rangle) = |c_i|^2$

Evolution: Schrodinger eq'n for $|\psi(t)\rangle$

Stochastic Markovian master eq'n for $|\Phi(t)\rangle$

that preserves the standard distribution

In modal interpretations, the preferred decomposition is...
Modal interpretations

Introduced by van Frassen, Kochen, Healey, and Dieks
Developed by Vermaas, Clifton, Bacciagaluppi, Dickson and others

Apply orthodox rule for property-ascription not to Ψ, but to an element in a preferred decomposition of Ψ

$$|\psi(t)\rangle = \sum_i c_i |\chi_i(t)\rangle$$

Supplementary variable: $|\Phi(t)\rangle \in \{|\chi_i(t)\rangle\}$

Ontic state: $\{|\psi(t)\rangle, |\Phi(t)\rangle\}$

Standard distribution: $Pr(|\Phi(t)\rangle = |\chi_i(t)\rangle) = |c_i|^2$

Evolution: Schrodinger eq'n for $|\psi(t)\rangle$

Stochastic Markovian master eq'n for $|\Phi(t)\rangle$ that preserves the standard distribution

In modal interpretations, the preferred decomposition is
For a bipartite system, the preferred decomposition is the Schmidt decomposition

\[|\psi(t)\rangle^{AB} = \sum_i c_i |u_i(t)\rangle^A |v_i(t)\rangle^B \]

where \[\langle u_i(t)|u_j(t)\rangle = \delta_{ij} \]
\[\langle v_i(t)|v_j(t)\rangle = \delta_{ij} \]
\[\sum_{i,j} A_{i,j} \Delta \phi_{i} v_{j} \]
For a bipartite system, the preferred decomposition is the Schmidt decomposition

\[|\psi(t)\rangle^{AB} = \sum_i c_i |u_i(t)\rangle^A |v_i(t)\rangle^B \]

where

\[\langle u_i(t) | u_j(t) \rangle = \delta_{ij} \]
\[\langle v_i(t) | v_j(t) \rangle = \delta_{ij} \]
For a bipartite system, the preferred decomposition is the Schmidt decomposition

$$|\psi(t)\rangle^{AB} = \sum_i c_i |u_i(t)\rangle^A |v_i(t)\rangle^B$$

where

$$\langle u_i(t)|u_j(t)\rangle = \delta_{ij}$$
$$\langle v_i(t)|v_j(t)\rangle = \delta_{ij}$$

Recall the Stern-Gerlach experiment

$$(a| \uparrow\rangle + b| \downarrow\rangle) \otimes |\text{"ready"}\rangle$$

$$\rightarrow a| \uparrow\rangle \otimes |\text{"up"}\rangle + b| \downarrow\rangle \otimes |\text{"down"}\rangle$$
\[|\psi^A_{AB} = \sum_{ij} c_{ij} |u_i^A \psi^A_0 |v_j^B \psi^B \]

\[
\rho^A = \frac{1}{2} \left(\frac{1}{\sqrt{2}} |1 + n_A^B \rangle \langle 1 - n_A^B| + \frac{1}{\sqrt{2}} |1 - n_A^B \rangle \langle 1 + n_A^B| \right)
\]
For a bipartite system, the preferred decomposition is the Schmidt decomposition

$$|\psi(t)\rangle^{AB} = \sum_i c_i |u_i(t)\rangle^A |v_i(t)\rangle^B$$

where

$$\langle u_i(t)|u_j(t)\rangle = \delta_{ij}$$
$$\langle v_i(t)|v_j(t)\rangle = \delta_{ij}$$

Recall the Stern-Gerlach experiment

$$(a|\uparrow\rangle + b|\downarrow\rangle) \otimes |\text{"ready"}\rangle$$

$$\rightarrow a|\uparrow\rangle \otimes |\text{"up"}\rangle + b|\downarrow\rangle \otimes |\text{"down"}\rangle$$
For a bipartite system, the preferred decomposition is the Schmidt decomposition

$$|\psi(t)\rangle^{AB} = \sum_i c_i |u_i(t)\rangle^A |v_i(t)\rangle^B$$

where

$$\langle u_i(t)|u_j(t)\rangle = \delta_{ij}$$
$$\langle v_i(t)|v_j(t)\rangle = \delta_{ij}$$

Recall the Stern-Gerlach experiment

$$(a|\uparrow\rangle + b|\downarrow\rangle) \otimes |"\text{ready}"\rangle \otimes |E_0\rangle$$

$$\rightarrow a|\uparrow\rangle \otimes |"\text{up}"\rangle \otimes |E_1\rangle + b|\downarrow\rangle \otimes |"\text{down}"\rangle \otimes |E_2\rangle$$
For a bipartite system, the preferred decomposition is the Schmidt decomposition

\[|\psi(t)\rangle^{AB} = \sum_i c_i |u_i(t)\rangle^A |v_i(t)\rangle^B \]

where

\[\langle u_i(t)|u_j(t)\rangle = \delta_{ij} \]
\[\langle v_i(t)|v_j(t)\rangle = \delta_{ij} \]

Recall the Stern-Gerlach experiment

\[(a|\uparrow\rangle + b|\downarrow\rangle) \otimes |\text{“ready”}\rangle \otimes |E_0\rangle \]
\[\rightarrow a|\uparrow\rangle\otimes|\text{“up”}\rangle\otimes|E_1\rangle + b|\downarrow\rangle\otimes|\text{“down”}\rangle\otimes|E_2\rangle \]

How to generalize to n-partite systems?
How to generalize to n-partite systems?
How to generalize to n-partite systems?

Perspectival approach - Systems only possess properties in relation to something else (not clear that this is genuinely realist)
For a bipartite system, the preferred decomposition is the Schmidt decomposition

$$|\psi(t)\rangle^{AB} = \sum_i c_i |u_i(t)\rangle^A |v_i(t)\rangle^B$$

where

$$\langle u_i(t) | u_j(t) \rangle = \delta_{ij}$$
$$\langle v_i(t) | v_j(t) \rangle = \delta_{ij}$$

Recall the Stern-Gerlach experiment

$$(a| \uparrow \rangle + b| \downarrow \rangle) \otimes |\text{“ready”}\rangle$$

$$\rightarrow a| \uparrow \rangle \otimes |\text{“up”}\rangle + b| \downarrow \rangle \otimes |\text{“down”}\rangle$$
For a bipartite system, the preferred decomposition is the Schmidt decomposition

$$|\psi(t)\rangle^{AB} = \sum_i c_i |u_i(t)\rangle^A |v_i(t)\rangle^B$$

where

$$\langle u_i(t)|u_j(t)\rangle = \delta_{ij}$$
$$\langle v_i(t)|v_j(t)\rangle = \delta_{ij}$$

Recall the Stern-Gerlach experiment

$$(a|\uparrow\rangle + b|\downarrow\rangle) \otimes |\text{“ready”}\rangle \otimes |E_0\rangle$$

$$\rightarrow a|\uparrow\rangle \otimes |\text{“up”}\rangle \otimes |E_1\rangle + b|\downarrow\rangle \otimes |\text{“down”}\rangle \otimes |E_2\rangle$$

How to generalize to n-partite systems?
How to generalize to n-partite systems?

Perspectival approach - Systems only possess properties in relation to something else
(not clear that this is genuinely realist)
How to generalize to n-partite systems?

Perspectival approach - Systems only possess properties in relation to something else (not clear that this is genuinely realist)

Atomic approach - use spectral resolutions of reduced density operators for a preferred factorization of Hilbert space (not clear that it is empirically adequate)
How to generalize to n-partite systems?

Perspectival approach - Systems only possess properties in relation to something else (not clear that this is genuinely realist)

Atomic approach - use spectral resolutions of reduced density operators for a preferred factorization of Hilbert space (not clear that it is empirically adequate)

Outstanding problems:
instability of preferred decomposition
infinite-dimensional systems
How to generalize to n-partite systems?

Perspectival approach - Systems only possess properties in relation to something else, (not clear that this is genuinely realist)

Atomic approach - use spectral resolutions of reduced density operators for a preferred factorization of Hilbert space (not clear that it is empirically adequate)

Outstanding problems:
instability of preferred decomposition
infinite-dimensional systems

Criticisms:
Underdetermination of dynamics
Failure of Lorentz invariance
Collapse theories
<table>
<thead>
<tr>
<th>Inconsistencies of the orthodox interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>By the collapse postulate</td>
</tr>
<tr>
<td>(applied to the system)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Indeterministic and</td>
</tr>
<tr>
<td>discontinuous evolution</td>
</tr>
<tr>
<td>Determinate properties</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>By unitary evolution postulate</td>
</tr>
<tr>
<td>(applied to isolated system that includes</td>
</tr>
<tr>
<td>the apparatus)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Deterministic and</td>
</tr>
<tr>
<td>continuous evolution</td>
</tr>
<tr>
<td>Indeterminate properties</td>
</tr>
</tbody>
</table>
The quantum measurement problem

\[(a\ket{\uparrow} + b\ket{\downarrow})\ket{\text{"ready"}} \rightarrow a\ket{\uparrow}\ket{\text{"up"}} + b\ket{\downarrow}\ket{\text{"down"}}\]
Responses to the measurement problem
Responses to the measurement problem

2. Deny representational completeness of ψ
 - ψ-ontic hidden variable models (e.g. deBroglie-Bohm)
 - ψ-epistemic hidden variable models
Responses to the measurement problem

2. Deny representational completeness of ψ
 - ψ-ontic hidden variable models (e.g. deBroglie-Bohm)
 - ψ-epistemic hidden variable models

4. Deny some aspect of classical logic or classical probability theory
 - Quantum logic and quantum Bayesianism
Responses to the measurement problem

1. Deny universality of quantum dynamics
 - Quantum-classical hybrid models
 - Collapse models

2. Deny representational completeness of ψ
 - ψ-ontic hidden variable models (e.g. deBroglie-Bohm)
 - ψ-epistemic hidden variable models

4. Deny some aspect of classical logic or classical probability theory
 - Quantum logic and quantum Bayesianism
Responses to the measurement problem

1. Deny universality of quantum dynamics
 - Quantum-classical hybrid models
 - Collapse models

2. Deny representational completeness of \(\psi \)
 - \(\psi \)-ontic hidden variable models (e.g. deBroglie-Bohm)
 - \(\psi \)-epistemic hidden variable models

3. Deny that there is a unique outcome
 - Everett’s relative state interpretation (many worlds)

4. Deny some aspect of classical logic or classical probability theory
 - Quantum logic and quantum Bayesianism
Responses to the measurement problem

1. Deny universality of quantum dynamics
 - Quantum-classical hybrid models
 - Collapse models

2. Deny representational completeness of ψ
 - ψ-ontic hidden variable models (e.g. deBroglie-Bohm)
 - ψ-epistemic hidden variable models

3. Deny that there is a unique outcome
 - Everett's relative state interpretation (many worlds)

4. Deny some aspect of classical logic or classical probability theory
 - Quantum logic and quantum Bayesianism

5. Deny some other feature of the realist framework?
Collapse theories

Posit a new dynamical evolution law: either nonlinear or indeterministic or both.

Recover unitary evolution and the collapse postulate as special cases.
Collapse theories

Posit a new dynamical evolution law:
either nonlinear or indeterministic or both

Recover unitary evolution and the collapse postulate as special cases

Microscopic systems obey unitary dynamics to good approximation
Macroscopic systems obey collapse dynamics to good approximation
Collapse theories

Posit a new dynamical evolution law:
either nonlinear or indeterministic or both

Recover unitary evolution and the collapse postulate as special cases

Microscopic systems obey unitary dynamics to good approximation
Macroscopic systems obey collapse dynamics to good approximation

Motivations:
• Achieves realism
Collapse theories

Posit a new dynamical evolution law:
either nonlinear or indeterministic or both

Recover unitary evolution and the collapse postulate as special cases

Microscopic systems obey unitary dynamics to good approximation
Macroscopic systems obey collapse dynamics to good approximation

Motivations:
• Achieves realism
• Maintains \(\psi \)-completeness
Collapse theories

Posit a new dynamical evolution law:
either nonlinear or indeterministic or both

Recover unitary evolution and the collapse postulate as special cases

Microscopic systems obey unitary dynamics to good approximation
Macroscopic systems obey collapse dynamics to good approximation

Motivations:
• Achieves realism
• Maintains ψ-completeness
• No “cut”, i.e. one universal dynamics (unlike a hybrid model)
Nonlinear deterministic models

\[| \uparrow \rangle | \text{"ready"} \rangle \rightarrow | \uparrow \rangle | \text{"up"} \rangle \]
\[| \downarrow \rangle | \text{"ready"} \rangle \rightarrow | \downarrow \rangle | \text{"down"} \rangle \]

\[(a | \uparrow \rangle + b | \downarrow \rangle) | \text{"ready"} \rangle \rightarrow a | \uparrow \rangle | \text{"up"} \rangle + b | \downarrow \rangle | \text{"down"} \rangle \]
Nonlinear deterministic models

\[|\uparrow\rangle|\text{“ready”}\rangle \rightarrow |\uparrow\rangle|\text{“up”}\rangle \]
\[|\downarrow\rangle|\text{“ready”}\rangle \rightarrow |\downarrow\rangle|\text{“down”}\rangle \]

\[(a|\uparrow\rangle + b|\downarrow\rangle)|\text{“ready”}\rangle \rightarrow a|\uparrow\rangle|\text{“up”}\rangle + b|\downarrow\rangle|\text{“down”}\rangle \]

rather \[(a|\uparrow\rangle + b|\downarrow\rangle)|\text{“ready”}\rangle \rightarrow |\uparrow\rangle|\text{“up”}_{a,b}\rangle \]

or \[|\downarrow\rangle|\text{“down”}_{a,b}\rangle \]
Nonlinear deterministic models

\[|\uparrow\rangle \text{“ready”} \rightarrow |\uparrow\rangle \text{“up”} \]
\[|\downarrow\rangle \text{“ready”} \rightarrow |\downarrow\rangle \text{“down”} \]

\[(a|\uparrow\rangle + b|\downarrow\rangle) \text{“ready”} \rightarrow a|\uparrow\rangle \text{“up”} + b|\downarrow\rangle \text{“down”} \]

rather \[(a|\uparrow\rangle + b|\downarrow\rangle) \text{“ready”} \rightarrow |\uparrow\rangle \text{“up”}_{a,b} \]

or

\[|\downarrow\rangle \text{“down”}_{a,b} \]

Final state depends on details of the initial state

Ignorance of those details implies subjective indeterminism
Nonlinear deterministic models

\[|\uparrow\rangle|\text{"ready"}\rangle \rightarrow |\uparrow\rangle|\text{"up"}\rangle \]
\[|\downarrow\rangle|\text{"ready"}\rangle \rightarrow |\downarrow\rangle|\text{"down"}\rangle \]

\[(a|\uparrow\rangle + b|\downarrow\rangle)|\text{"ready"}\rangle \rightarrow \ a|\uparrow\rangle|\text{"up"}\rangle + b|\downarrow\rangle|\text{"down"}\rangle \]

rather \[(a|\uparrow\rangle + b|\downarrow\rangle)|\text{"ready"}\rangle \rightarrow \ |\uparrow\rangle|\text{"up"}_{\ a,b}\rangle \]

or

\[|\downarrow\rangle|\text{"down"}_{\ a,b}\rangle \]

Final state depends on details of the initial state

Ignorance of those details implies subjective indeterminism
Nonlinear deterministic models

\[| \uparrow \rangle | \text{"ready"} \rangle \rightarrow | \uparrow \rangle | \text{"up"} \rangle \]
\[| \downarrow \rangle | \text{"ready"} \rangle \rightarrow | \downarrow \rangle | \text{"down"} \rangle \]

\[(a | \uparrow \rangle + b | \downarrow \rangle) | \text{"ready"} \rangle \rightarrow a | \uparrow \rangle | \text{"up"} \rangle + b | \downarrow \rangle | \text{"down"} \rangle \]

rather \[(a | \uparrow \rangle + b | \downarrow \rangle) | \text{"ready"} \rangle \rightarrow | \uparrow \rangle | \text{"up"}_{a,b} \rangle \]
or \[| \downarrow \rangle | \text{"down"}_{a,b} \rangle \]

Final state depends on details of the initial state

Ignorance of those details implies subjective indeterminism

Many problems with nonlinearities
Linear indeterministic models

The goal:

\[(a|\uparrow \rangle + b|\downarrow \rangle)|\text{“ready”}\rangle \rightarrow |\uparrow \rangle|\text{“up”}\rangle \text{ with probability } |a|^2\]
\[\rightarrow |\downarrow \rangle|\text{“down”}\rangle \text{ with probability } |b|^2\]
Linear indeterministic models

The goal:

\[(a | \uparrow \rangle + b | \downarrow \rangle) | \text{"ready"} \rangle \rightarrow | \uparrow \rangle | \text{"up"} \rangle \text{ with probability } |a|^2\]

\[\rightarrow | \downarrow \rangle | \text{"down"} \rangle \text{ with probability } |b|^2\]

The preferred decomposition issue

Into what states do collapses occur?
Linear indeterministic models

The goal:

\[(a|\uparrow\rangle + b|\downarrow\rangle)|\text{“ready”}\rangle \rightarrow |\uparrow\rangle|\text{“up”}\rangle \quad \text{with probability} \quad |a|^2\]

\[\rightarrow |\downarrow\rangle|\text{“down”}\rangle \quad \text{with probability} \quad |b|^2\]

The preferred decomposition issue

Into what states do collapses occur?

The trigger issue

When and how do collapses occur?
The Ghirardi-Rimini-Weber model
The Ghirardi-Rimini-Weber model

At most times:

\[i\hbar \frac{\partial}{\partial t} \psi(r_1, ..., r_N, t) = H \psi(r_1, ..., r_N, t) \]

Schrödinger's equation
The Ghirardi-Rimini-Weber model

At most times:

\[i\hbar \frac{\partial}{\partial t} \psi(r_1, \ldots, r_N, t) = H \psi(r_1, \ldots, r_N, t) \] \quad \text{Schrödinger's equation}

Every \(\tau/N \) time interval on average

\[\psi(r_1, \ldots, r_N, t + dt) = \frac{1}{\sqrt{p(q_k)}} j_{q_k}(r_k) \psi(r_1, \ldots, r_N, t) \] \quad \text{“Collapse”}

where \[j_{q_k}(r) = K \exp\left(-\frac{(r-q_k)^2}{2\sigma^2}\right) \]
The Ghirardi-Rimini-Weber model

At most times:

\[i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}_1, \ldots, \mathbf{r}_N, t) = H \psi(\mathbf{r}_1, \ldots, \mathbf{r}_N, t) \] \quad \text{Schrödinger's equation}

Every \(\frac{\tau}{N} \) time interval on average

\[\psi(\mathbf{r}_1, \ldots, \mathbf{r}_N, t + dt) = \frac{1}{\sqrt{p(q_k)}} \ j_{q_k}(q_k) \psi(\mathbf{r}_1, \ldots, \mathbf{r}_N, t) \] \quad \text{“Collapse”}

where

\[j_{q_k}(\mathbf{r}) = K \exp\left(-\frac{(\mathbf{r}-\mathbf{q}_k)^2}{2\sigma^2}\right) \]

\[p(q_k) = \int d\mathbf{r}_1 \ldots d\mathbf{r}_N \ |j_{q_k}(q_k)\psi(\mathbf{r}_1, \ldots, \mathbf{r}_N, t)|^2 \]
The Ghirardi-Rimini-Weber model

At most times:

\[i\hbar \frac{\partial}{\partial t} \psi(r_1, ..., r_N, t) = H \psi(r_1, ..., r_N, t) \]
Schrödinger's equation

Every \(\tau/N \) time interval on average

\[\psi(r_1, ..., r_N, t + dt) = \frac{1}{\sqrt{p(q_k)}} j_{q_k}(r_k) \psi(r_1, ..., r_N, t) \]
"Collapse"

where

\[j_{q_k}(r) = K \exp(-\frac{(r-q_k)^2}{2\sigma^2}) \]
\[p(q_k) = \int dr_1...dr_N |j_{q_k}(r_k)\psi(r_1, ..., r_N, t)|^2 \]

\(k \) is chosen uniformly at random

\(q_k \) is chosen by sampling from \(p(q_k) \)
The Ghirardi-Rimini-Weber model

At most times:

\[i\hbar \frac{\partial}{\partial t} \psi(r_1, \ldots, r_N, t) = H \psi(r_1, \ldots, r_N, t) \quad \text{Schrödinger's equation} \]

Every \(\frac{\tau}{N} \) time interval on average

\[\psi(r_1, \ldots, r_N, t + dt) = \frac{1}{\sqrt{p(q_k)}} \int j_{q_k}(r_k) \psi(r_1, \ldots, r_N, t) \quad \text{"Collapse"} \]

where

\[j_{q_k}(r) = K \exp(-\frac{(r - q_k)^2}{2\sigma^2}) \]

\[p(q_k) = \int dr_1 \ldots dr_N \left| j_{q_k}(r_k) \psi(r_1, \ldots, r_N, t) \right|^2 \]

\(k \) is chosen uniformly at random

\(q_k \) is chosen by sampling from \(p(q_k) \)

Two new fundamental constants:

\[\tau \approx 10^{15} \text{s} \approx 100 \text{ million years} \quad \text{mean time between collapses for one particle} \]
The Ghirardi-Rimini-Weber model

At most times:

\[i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle \]

Schrödinger's equation

Every \(\frac{\tau}{N} \) time interval on average

\[|\psi(t + dt)\rangle = \frac{1}{\sqrt{p(q_k)}} Q^{(k)}(q_k) |\psi(t)\rangle \]

"Collapse"

where

\[Q^{(k)}(q_k) = \int dr_k \ j(q_k) \left| r_k \right\rangle \left\langle r_k \right| \]

\[p(q_k) = \langle \psi(t) | Q^{(k)^\dagger}(q_k) Q^{(k)}(q_k) |\psi(t)\rangle \]

\(k \) is chosen uniformly at random

\(q_k \) is chosen by sampling from \(p(q_k) \)

Two new fundamental constants:

\[\tau \approx 10^{15} s \approx 100 \text{ million years} \]

mean time between collapses for one particle
Single particle in 1D
Single particle in 1D

\[\psi(x) = K \left(\frac{\sqrt{3}}{2} \phi_a(x) + \frac{1}{2} \phi_b(x) \right) \]
Single particle in 1D

\[r(x) = K \left(\frac{\sqrt{3}}{2} \phi_a(x) + \frac{1}{2} \phi_b(x) \right) \]

\[j_q(x) = K \exp\left(-\frac{(x-q)^2}{2\sigma^2} \right) \]
Single particle in 1D

\[\psi(x) = K \left(\frac{\sqrt{3}}{2} \phi_a(x) + \frac{1}{2} \phi_b(x) \right) \]

\[j_q(x) = K \exp\left(-\frac{(x-q)^2}{2\sigma^2} \right) \]
Single particle in 1D

\[v(x) = K \left(\frac{\sqrt{3}}{2} \phi_a(x) + \frac{1}{2} \phi_b(x) \right) \]

\[j_q(x) = K \exp\left(-\frac{(x-q)^2}{2\sigma^2}\right) \]

Two particles in 1D

\[\psi(x_1, x_2) = K \left(\frac{\sqrt{3}}{2} \phi_a(x_1) \chi_a(x_2) + \frac{1}{2} \phi_b(x_1) \chi_b(x_2) \right) \]
Single particle in 1D

\[\psi(x) = K \left(\frac{\sqrt{3}}{2} \phi_a(x) + \frac{1}{2} \phi_b(x) \right) \]

\[j_q(x) = K \exp\left(-\frac{(x-q)^2}{2\sigma^2} \right) \]

Two particles in 1D

\[\psi(x_1, x_2) = K \left(\frac{\sqrt{3}}{2} \phi_a(x_1) \chi_a(x_2) + \frac{1}{2} \phi_b(x_1) \chi_b(x_2) \right) \]
Single particle in 1D

\[v(x) = K \left(\frac{\sqrt{3}}{2} \phi_a(x) + \frac{1}{2} \phi_b(x) \right) \]

\[j_q(x) = K \exp \left(-\frac{(x-q)^2}{2\sigma^2} \right) \]

Two particles in 1D

\[\psi(x_1, x_2) = K \left(\frac{\sqrt{3}}{2} \phi_a(x_1) \chi_a(x_2) + \frac{1}{2} \phi_b(x_1) \chi_b(x_2) \right) \]

\[\psi'(x_1, x_2) \approx \phi_a(x_1) \chi'_a(x_2) \]
Single particle in 1D

\[v(x) = K \left(\frac{\sqrt{3}}{2} \phi_a(x) + \frac{1}{2} \phi_b(x) \right) \]

\[j_q(x) = K \exp\left(-\frac{(x-q)^2}{2\sigma^2} \right) \]

Two particles in 1D

\[\psi(x_1, x_2) = K \left(\frac{\sqrt{3}}{2} \phi_a(x_1) \chi_a(x_2) + \frac{1}{2} \phi_b(x_1) \chi_b(x_2) \right) \]

\[\psi'(x_1, x_2) \approx \phi_a(x_1) \chi_a'(x_2) \]
\[\psi = a \, \phi_a(\mathbf{r}_1) \chi_a(\mathbf{r}_2, \ldots, \mathbf{r}_M) + b \, \phi_b(\mathbf{r}_1) \chi_b(\mathbf{r}_2, \ldots, \mathbf{r}_M) \]
\[\psi = a \, \phi_a(\mathbf{r}_1) \chi_a(\mathbf{r}_2, \ldots, \mathbf{r}_M) + b \, \phi_b(\mathbf{r}_1) \chi_b(\mathbf{r}_2, \ldots, \mathbf{r}_M) \]
\[\psi = a \phi_a(r_1) \chi_a(r_2, ..., r_M) + b \phi_b(r_1) \chi_b(r_2, ..., r_M) \]

Suppose \(\chi_a(...r_k...) \chi_b(...r_k...) \approx 0 \) for macroscopic \# of components
\[\psi = a \, \phi_a(\mathbf{r}_1) \chi_a(\mathbf{r}_2, \ldots, \mathbf{r}_M) + b \, \phi_b(\mathbf{r}_1) \chi_b(\mathbf{r}_2, \ldots, \mathbf{r}_M) \]

Suppose \(\chi_a(\ldots\mathbf{r}_k\ldots) \chi_b(\ldots\mathbf{r}_k\ldots) \approx 0 \) for macroscopic \# of components.

One particle is hit \(\rightarrow \) all are localized
\(\psi = a \phi_a(\mathbf{r}_1) \chi_a(\mathbf{r}_2, \ldots, \mathbf{r}_M) + b \phi_b(\mathbf{r}_1) \chi_b(\mathbf{r}_2, \ldots, \mathbf{r}_M) \)

Suppose \(\chi_a(...\mathbf{r}_k...) \chi_b(...\mathbf{r}_k...) \approx 0 \) for macroscopic \# of components

One particle is hit \(\rightarrow \) all are localized

\(\psi' = \phi_a(\mathbf{r}_1) \chi'_a(\mathbf{r}_2, \ldots, \mathbf{r}_M) \) with probability \(|a|^2 \)

\(\psi' = \phi_b(\mathbf{r}_1) \chi'_b(\mathbf{r}_2, \ldots, \mathbf{r}_M) \) with probability \(|b|^2 \)
\[\psi = a \phi_a(r_1)x_a(r_2, \ldots, r_M) + b \phi_b(r_1)x_b(r_2, \ldots, r_M) \]

Suppose \(x_a(\ldots r_k \ldots)x_b(\ldots r_k \ldots) \approx 0 \) for macroscopic \# of components

One particle is hit \(\rightarrow \) all are localized

\[\psi' = \phi_a(r_1)x'_a(r_2, \ldots, r_M) \text{ with probability } |a|^2 \]

\[\psi' = \phi_b(r_1)x'_b(r_2, \ldots, r_M) \text{ with probability } |b|^2 \]

For \(M \approx 10^{20} \) particles

This happens every \(\frac{10^{15}}{10^{20}} \text{s} \approx 10^{-5} \text{s} \)
\[
\psi = a \phi_a(\mathbf{r}_1) \chi_a(\mathbf{r}_2, \ldots, \mathbf{r}_M) + b \phi_b(\mathbf{r}_1) \chi_b(\mathbf{r}_2, \ldots, \mathbf{r}_M)
\]

Suppose \(\chi_a(\mathbf{r}_k) \chi_b(\mathbf{r}_k) \approx 0 \) for macroscopic \# of components

One particle is hit \(\Rightarrow \) all are localized

\[
\psi' = \phi_a(\mathbf{r}_1) \chi'_a(\mathbf{r}_2, \ldots, \mathbf{r}_M) \quad \text{with probability } |a|^2
\]

\[
\psi' = \phi_b(\mathbf{r}_1) \chi'_b(\mathbf{r}_2, \ldots, \mathbf{r}_M) \quad \text{with probability } |b|^2
\]

For \(M \approx 10^{20} \) particles

This happens every \(\frac{10^{15}}{10^{20}} \approx 10^{-5} \) seconds

The apparatus gets determinate properties.
Constraints on parameters

\(\tau \) too big \(\rightarrow \) persistence of coherence of macro objects

\(\tau \) too small \(\rightarrow \) loss of coherence of micro objects
Constraints on parameters

\(\tau \) too big \(\rightarrow \) persistence of coherence of macro objects
\(\tau \) too small \(\rightarrow \) loss of coherence of micro objects

\(\sigma \) too big \(\rightarrow \) delocalized macro objects
\(\sigma \) too small \(\rightarrow \) excitation and heating
Constraints on parameters

\(\tau \) too big \(\rightarrow \) persistence of coherence of macro objects
\(\tau \) too small \(\rightarrow \) loss of coherence of micro objects

\(\sigma \) too big \(\rightarrow \) delocalized macro objects
\(\sigma \) too small \(\rightarrow \) excitation and heating

Experimental status

Difficult to distinguish fundamental collapse from decoherence
Difficult to detect anomalous heating
Continuous Spontaneous localization

Philip Pearle

Collapse is a continuous process governed by a randomly fluctuating field “gambler’s ruin”
What causes dynamical collapse?
What causes dynamical collapse?

gravity?

complexity?

new fields?
What causes dynamical collapse?

gravity?

complexity?

new fields?

Criticisms

The "tails" problem
What causes dynamical collapse?

gravity?

complexity?

new fields?

Criticisms

The “tails” problem

Failure of energy conservation

Failure of Lorentz invariance for current models