Title: Phases of eternal inflation
Date: Jun 15, 2010 05:15 PM
URL: http://pirsa.org/10060014
Abstract: TBA
On the Topological Phases of Eternal Inflation, Yasuhiro Sekino, Stephen Shenker, Leonard Susskind

arXiv:1003.1347

How many kinds of Eternal Inflation are there?

Lots
Phases of Eternal Inflation

Model

\[V \]

rate varies.

No eternal inflation

Eternal Inflation

White

Black

\(\phi \)
Mandelbrot Percolation Model

Chayes, Chayes, Grannen, Swindle

\[P = "\text{kill}" \text{ probability} \]
\[\text{(black)} \]

(3-D version is obvious generalization)

Number of "offspring" = 8.

Average number of survivors is \(8(1-P) \)

Extinction: \(8(1-P) < 1 \)

This is the 2\text{nd} order transition from NEI to EI.
Transition from Eternal Inflation to No-Eternal-Inflation

\[V_n = \text{coordinate volume after } n \text{ steps} \]

\[V_{n+1} = (1-P)V_n \]

\[V_n = (1-P)^n \rightarrow 0 \]

The inflating region becomes a fractal of dimension \(< 3\).

But the number of (white) inflating boxes

\[= \{8(1-P)\}^n \rightarrow \text{infinity if } P > P_{\text{crit}} \]
$P \ll 1$ Black Island Phase

Collisions are inevitable, and so is topology.
Black Island Phase:

There exist white crossing surfaces for all \(n \).

Note that this characterization requires no metric on the future boundary.
One step percolation problem

Percolation clusters
Ordinary one-step Percolation (3-D)

As P increases the average size of a connected cluster (R) grows.

At the 2nd order transition pt, R diverges. The white crossing surfaces become interrupted. WXS $\not\exists$ but white-crossing-curves do exist.

This is the tubular phase of the percolation problem.
\[\Gamma' = \text{RATE/H} \]

\[\Gamma' \ll 1 \]

BLACK ISLAND
Black Island Phase

$\Gamma \ll 1$

(Crossing Surfaces)

(All at Future ∞)
2nd order

Percolation

Begin by cutting off small (late) nucleation

Tubular phase

No crossing surfaces but crossing curves

A single infinite tubular network plus black islands
But in Mandelbrot percolation the tube-like network is the entire black set.
Eternal Inflation

No Eternal Inflation

Black Island | Tubular | White Island | No Eternal Inflation

1st order | 1st order | 2nd order
The final percolation transition is also 1st order. Tubular \rightarrow White Island. In this phase there are no white crossing surfaces or curves. Isolated white (inflating) regions.
The final percolation transition is also 1st order. Tubular \Rightarrow White Island. In this phase there are no white crossing surfaces or curves. Isolated white (inflating) regions.
"CENSUS TAKER" SEES SMALLER AND SMALLER ANGULAR DETAIL.

FRW/CFT RG FLOW
Everything in a black island is visible (eventually)

different islands are not visible