The Everett interpretation
"Many Worlds"

Hugh Everett, III
(1930-1982)
The Everett interpretation
"Many Worlds"

Hugh Everett, III
(1930-1982)
“Orthodox” postulates of quantum theory

Representational completeness of \(\psi \). The rays of Hilbert space correspond one-to-one with the physical states of the system.

Measurement. If the Hermitian operator \(A \) with spectral projectors \(\{ P_k \} \) is measured, the probability of outcome \(k \) is \(\langle \psi | P_k | \psi \rangle \). These probabilities are objective -- indeterminism.

Evolution of isolated systems. It is unitary, \(|\psi\rangle \rightarrow U|\psi\rangle = e^{-\frac{i}{\hbar}Ht}|\psi\rangle \) therefore deterministic and continuous.

Evolution of systems undergoing measurement. If Hermitian operator \(A \) with spectral projectors \(\{ P_k \} \) is measured and outcome \(k \) is obtained, the physical state of the system changes discontinuously,

\[
|\psi\rangle \rightarrow |\psi_k\rangle = \frac{P_k|\psi\rangle}{\sqrt{\langle \psi | P_k | \psi \rangle}}
\]
“Orthodox” postulates of quantum theory

Representational completeness of \(\psi \). The rays of Hilbert space correspond one-to-one with the physical states of the system.

Measurement. If the Hermitian operator \(A \) with spectral projectors \(\{ P_k \} \) is measured, the probability of outcome \(k \) is \(\langle \psi | P_k | \psi \rangle \). These probabilities are objective -- indeterminism.

Evolution of isolated systems. It is unitary, \(| \psi \rangle \rightarrow U | \psi \rangle = e^{-i \frac{\hbar}{\hbar} H t} | \psi \rangle \) therefore deterministic and continuous.

Evolution of systems undergoing measurement. If Hermitian operator \(A \) with spectral projectors \(\{ P_k \} \) is measured and outcome \(k \) is obtained, the physical state of the system changes discontinuously,

\[
| \psi \rangle \rightarrow | \psi_k \rangle = \frac{P_k | \psi \rangle}{\sqrt{\langle \psi | P_k | \psi \rangle}}
\]
Quantum measurement

\[(a|\uparrow\rangle + b|\downarrow\rangle)|\text{“ready”}\rangle\]
\[\rightarrow a|\uparrow\rangle|\text{“up”}\rangle + b|\downarrow\rangle|\text{“down”}\rangle\]
Quantum measurement with observer

\[
(a|\uparrow\rangle + b|\downarrow\rangle)|\text{"ready"}\rangle |\text{"ready to observe"}\rangle
\]

\[
\rightarrow a|\uparrow\rangle|\text{"up"}\rangle |\text{"observe up"}\rangle + b|\downarrow\rangle|\text{"down"}\rangle |\text{"observe down"}\rangle
\]
Quantum measurement with observer

\[(a|\uparrow\rangle + b|\downarrow\rangle)|\text{“ready”}\rangle|\text{“ready to observe”}\rangle \]

\[\rightarrow a|\uparrow\rangle|\text{“up”}\rangle|\text{“observe up”}\rangle + b|\downarrow\rangle|\text{“down”}\rangle|\text{“observe down”}\rangle \]

Note that in each branch, the observer will not report observing anything unusual.
Quantum measurement with many observers

\[(a\uparrow \rangle + b\downarrow \rangle) \vert \text{"ready"} \rangle \vert \text{"ready to observe"} \rangle \vert \text{"ready to observe"} \rangle\]
Quantum measurement with many observers

\[(a|\uparrow\rangle + b|\downarrow\rangle)|\text{"ready"}\rangle |\text{"ready to observe"}\rangle |\text{"ready to observe"}\rangle\]

\[\rightarrow (a|\uparrow\rangle |\text{"up"}\rangle |\text{"observe up"}\rangle + a|\downarrow\rangle |\text{"down"}\rangle |\text{"observe down"}\rangle \otimes |\text{"ready to observe"}\rangle\]
Quantum measurement with many observers

\[(a| \uparrow \rangle + b| \downarrow \rangle) | \text{"ready"} \rangle | \text{"ready to observe"} \rangle | \text{"ready to observe"} \rangle \]

\[\rightarrow (a| \uparrow \rangle | \text{"up"} \rangle | \text{"observe up"} \rangle + a| \downarrow \rangle | \text{"down"} \rangle | \text{"observe down"} \rangle \rangle \]

\[\otimes | \text{"ready to observe"} \rangle \]

\[\rightarrow a| \uparrow \rangle | \text{"up"} \rangle | \text{"observe up"} \rangle | \text{"observe up"} \rangle \]

\[+ b| \downarrow \rangle | \text{"down"} \rangle | \text{"observe down"} \rangle | \text{"observe down"} \rangle \]
Quantum measurement with many observers

\[(a| \uparrow \rangle + b| \downarrow \rangle)| \text{“ready”} \rangle | \text{“ready to observe”} \rangle | \text{“ready to observe”} \rangle \]

→ \[(a| \uparrow \rangle | \text{“up”} \rangle | \text{“observe up”} \rangle \rangle + a| \downarrow \rangle | \text{“down”} \rangle | \text{“observe down”} \rangle \rangle \]

⊗ | \text{“ready to observe”} \rangle

→ \[a| \uparrow \rangle | \text{“up”} \rangle | \text{“observe up”} \rangle | \text{“observe up”} \rangle \]

+ \[b| \downarrow \rangle | \text{“down”} \rangle | \text{“observe down”} \rangle | \text{“observe down”} \rangle \]
“...we shall deduce the probabilistic assertions of [the collapse postulate] as subjective appearances to such observers, thus placing the theory in correspondence with experience. We are then led to the novel situation in which the formal theory is objectively continuous and causal, while subjectively discontinuous and probabilistic. (1973, p. 9).

Hugh Everett, III (1930-1982)
Everett’s relative states

Neither system nor observer "has a state," as in the orthodox interpretation, but

\[| \uparrow \rangle \text{ is the state of the system relative to } | \text{“observe up”} \rangle \]
\[| \downarrow \rangle \text{ is the state of the system relative to } | \text{“observe down”} \rangle \]

Everett: “The ‘quantum jumps’ exist in our theory as relative phenomena (i.e., the states of an object-system relative to chosen observer states shows this effect), while the absolute states change quite continuously.”
Quantum measurement with observer

\[(a \uparrow \rangle + b \downarrow \rangle) \langle \text{"ready"} \rangle | \text{"ready to observe"} \rangle\]

\[\rightarrow a \uparrow \rangle \langle \text{"up"} \rangle | \text{"observe up"} \rangle + b \downarrow \rangle \langle \text{"down"} \rangle | \text{"observe down"} \rangle\]

rewrite as

\[(a + b \downarrow \rangle \langle R \rangle \rightarrow a \uparrow \rangle | E \rangle + b \downarrow \rangle | \text{"observe down"} \rangle\]
Preferred basis problem

\[(a|+\rangle + b|-\rangle)|R\rangle \rightarrow a|+\rangle|F_+\rangle + b|-\rangle|F_-\rangle \]

\[= \left(\frac{a|+\rangle + b|-\rangle}{\sqrt{2}} \right) \left(\frac{|F_+\rangle + |F_-\rangle}{\sqrt{2}} \right) + \left(\frac{a|+\rangle - b|-\rangle}{\sqrt{2}} \right) \left(\frac{|F_+\rangle - |F_-\rangle}{\sqrt{2}} \right) \]
Preferred basis problem

\[a|+\rangle|F_+\rangle + b|-\rangle|F_-\rangle\rangle|E_0\rangle \rightarrow a|+\rangle|F_+\rangle|E_+\rangle + b|-\rangle|F_-\rangle|E_-\rangle \]

Decoherence:

- Rapid diagonalization in some basis of the reduced density operator of the system
- Effective impossibility of preparing superpositions of the basis states
Preferred basis problem

\[a|+\rangle |F_+\rangle + b|-\rangle |F_-\rangle \rangle |E_0\rangle \rightarrow \ a|+\rangle |F_+\rangle |E_+\rangle + b|-\rangle |F_-\rangle |E_-\rangle \]

\[= \left(\frac{a|+\rangle |E_+\rangle + b|-\rangle |E_-\rangle }{\sqrt{2}} \right) \left(\frac{|F_+\rangle+|F_-\rangle }{\sqrt{2}} \right) \]
\[+ \left(\frac{a|+\rangle |E_+\rangle - b|-\rangle |E_-\rangle }{\sqrt{2}} \right) \left(\frac{|F_+\rangle-|F_-\rangle }{\sqrt{2}} \right) \]

Decoherence:

- Rapid diagonalization in some basis of the reduced density operator of the system
- Effective impossibility of preparing superpositions of the basis states
Preferred basis problem

\[a|+\rangle|F_+\rangle + b|-\rangle|F_-\rangle|E_0\rangle \rightarrow a|+\rangle|F_+\rangle|E_+\rangle + b|-\rangle|F_-\rangle|E_-\rangle \]

\[= \left(\frac{a|+\rangle|E_+\rangle + b|-\rangle|E_-\rangle}{\sqrt{2}} \right) \left(\frac{|F_+\rangle + |F_-\rangle}{\sqrt{2}} \right) \]

\[+ \left(\frac{a|+\rangle|E_+\rangle - b|-\rangle|E_-\rangle}{\sqrt{2}} \right) \left(\frac{|F_+\rangle - |F_-\rangle}{\sqrt{2}} \right) \]

Decoherence:

- Rapid diagonalization in some basis of the reduced density operator of the system
- Effective impossibility of preparing superpositions of the basis states

Kent's criticism: "no preferred basis can arise, from the dynamics or from anything else, unless some basis selection rule is given."
Trans-temporal identity problem

In addition to a preferred basis, one needs a notion of how to connect basis elements at one time to those at another.
Trans-temporal identity problem

In addition to a preferred basis, one needs a notion of how to connect basis elements at one time to those at another.

Imagine removing the notion of trajectories from pilot-wave theories. Bell’s criticism: Everett entails radical scepticism about the past.
Response (drawn primarily from the work of David Wallace)

No axiom is needed for basis selection because real things (macroscopic objects and worlds) are emergent patterns.
Response (drawn primarily from the work of David Wallace)

No axiom is needed for basis selection because real things (macroscopic objects and worlds) are emergent patterns.

"Tigers are patterns that behave like tigers"

real, but not directly represented in the axioms
Response (drawn primarily from the work of David Wallace)

No axiom is needed for basis selection because real things (macroscopic objects and worlds) are emergent patterns.

“Tigers are patterns that behave like tigers”
real, but not directly represented in the axioms

Dennett’s Criterion: A macro-object is a pattern, and the existence of a pattern as a real thing depends on the usefulness --- in particular, the explanatory power and predictive reliability --- of theories which admit that pattern in their ontology.
Response (drawn primarily from the work of David Wallace)

No axiom is needed for basis selection because real things (macroscopic objects and worlds) are emergent patterns.

“Tigers are patterns that behave like tigers”

real, but not directly represented in the axioms

The branches picked out by decoherence admit of patterns that have explanatory and predictive power, such as tigers.

Patterns are not precisely defined, but this need not detract from their reality (consider a mountain, or a species)
Response to the transtemporal identity problem

Similarity of a pattern across time allows for a pragmatic (and imprecise) notion of world identity across time (in certain circumstances)
The problem with probabilities

The Incoherence Problem:
How can anything “be probability” in a deterministic theory where all possible outcomes occur and there is nothing to be ignorant about?
Sequence of measurements:

\[
|+\rangle + b|\rangle \rangle^{\text{IV}} \langle a|\rangle + b|\rangle \rangle^{\text{III}} \langle a|\rangle + b|\rangle \rangle^{\text{II}} \langle a|\rangle + b|\rangle \rangle^{\text{I}} |R\rangle^I |R\rangle^H |R\rangle^H |R\rangle^H \rightarrow
\]

\[
(a|\rangle + b|\rangle) \rangle^{\text{IV}} (a|\rangle + b|\rangle) \rangle^{\text{III}} (a|\rangle + b|\rangle) \rangle^{\text{II}} (a|\rangle^I |F_+|^I + b|\rangle^I |F_-|^I) |R\rangle^H |R\rangle^H |R\rangle^H |R\rangle^H \rightarrow
\]
"branches"

Different branches correspond to different subjective experiences

\[(a+|F_\rangle + b-|F_-\rangle)^\otimes N \]
"branches"

Different branches correspond to different subjective experiences

All branches are actual → all experiences occur

Cannot understand probability in terms of where the "real" me ends up

\[(a|+|F_-) + b|\leq|F_-) \]
"branches"

Different branches correspond to different subjective experiences.

All branches are actual \(\rightarrow \) all experiences occur.

Cannot understand probability in terms of where the "real" me ends up.

Problem of theory confirmation:
Why should seeing all "+" cast any doubt on the theory?
In the limit $N \to \infty$, in all branches except a set of measure zero, the frequency of + results is the same.

What is this "typical" frequency?

$$(a + |F_+\rangle + b - |F_-\rangle)^\otimes N$$
In the limit $N \to \infty$, in all branches except a set of measure zero, the frequency of + results is the same.

What is this “typical” frequency?

For a counting measure over branches \(\frac{1}{2} \)

For the Born measure over branches \(|a|^2 \)
In the limit $N \to \infty$, in all branches except a set of measure zero, the frequency of $+$ results is the same.

What is this “typical” frequency?

For a counting measure over branches $\frac{1}{2}$

For the Born measure over branches $|a|^2$

Caves and Schack: In the law of large numbers, inferences run not from
In any case, we need to reproduce a notion of probability for finite sequences of measurements.

And the universal wavefunction will never be in an eigenstate of anyone performing a sequence of measurements.
The problem with probabilities

The Incoherence Problem:
How can anything "be probability" in a deterministic theory where all possible outcomes and there is nothing to be ignorant about?
The problem with probabilities

The Incoherence Problem:
How can anything “be probability” in a deterministic theory where all possible outcomes and there is nothing to be ignorant about?

The Quantitative Problem:
What kind of argument can be given to justify the claim that mod-squared amplitude is probability?
Response to the problem of probabilities

Deutsch’s decision-theoretic strategy: Probability gets its meaning through the rational preferences of agents. Born-rule weight in Everett plays the same role in weighting utilities in decision theory as probabilities do in one-world indeterministic theories. A rational agent who knows that the Born-rule weight of an outcome is p is rationally compelled to act as if that outcome had probability p.
Response to the problem of probabilities

Deutsch’s decision-theoretic strategy: Probability gets its meaning through the rational preferences of agents. Born-rule weight in Everett plays the same role in weighting utilities in decision theory as probabilities do in one-world indeterministic theories. A rational agent who knows that the Born-rule weight of an outcome is p is rationally compelled to act as if that outcome had probability p.

Barnum et al.: Deutsch’s proof has a hidden assumption which is akin to applying Laplace’s Principle of Insufficient Reason to a set of equal-amplitude alternatives, an application that requires acknowledging a priori that amplitudes are related to probabilities.
Response to the problem of probabilities

Deutsch’s decision-theoretic strategy: Probability gets its meaning through the rational preferences of agents. Born-rule weight in Everett plays the same role in weighting utilities in decision theory as probabilities do in one-world indeterministic theories. A rational agent who knows that the Born-rule weight of an outcome is p is rationally compelled to act as if that outcome had probability p.

Barnum et al.: Deutsch’s proof has a hidden assumption which is akin to applying Laplace’s Principle of Insufficient Reason to a set of equal-amplitude alternatives, an application that requires acknowledging a priori that amplitudes are related to probabilities.

Albert’s criticism: It is not enough to show that agents who believed in the Everett picture would bet according to the Born measure, one must explain why we observe the particular relative frequencies that we do.
Comparison of deBroglie-Bohm to Everett
Comparison of deBroglie-Bohm to Everett

There are a multiplicity of realities in the deBroglie-Bohm pilot-wave just as much as in the Everettian universal state. Therefore, Ockham’s razor prefers Everett to deBroglie-Bohm!
Comparison of deBroglie-Bohm to Everett

There are a multiplicity of realities in the deBroglie-Bohm pilot-wave just as much as in the Everettian universal state. Therefore, Ockham’s razor prefers Everett to deBroglie-Bohm!

The additional structure in deBroglie-Bohm is underdetermined by observable data and spoils Lorentz covariance.
Comparison of deBroglie-Bohm to Everett

There are a multiplicity of realities in the deBroglie-Bohm pilot-wave just as much as in the Everettian universal state. Therefore, Ockham’s razor prefers Everett to deBroglie-Bohm!

The additional structure in deBroglie-Bohm is underdetermined by observable data and spoils Lorentz covariance.

Macroscopic reality is an emergent pattern in the wavefunction, not the configuration of the Bohmian particles. For instance, the response of a measurement device to an impinging system is encoded in the wavefunction; the Bohmian particle’s position only picks out a branch.
Comparison of deBroglie-Bohm to Everett

There are a multiplicity of realities in the deBroglie-Bohm pilot-wave just as much as in the Everettian universal state. Therefore, Ockham's razor prefers Everett to deBroglie-Bohm!

The additional structure in deBroglie-Bohm is underdetermined by observable data and spoils Lorentz covariance.

Macroscopic reality is an emergent pattern in the wavefunction, not the configuration of the Bohmian particles. For instance, the response of a measurement device to an impinging system is encoded in the wavefunction; the Bohmian particle's position only picks out a branch.

Responses:
All macroscopic phenomena, including mental sensations, depend on the configurations of Bohmian particles, not on the wavefunction. And the possibility of non-equilibrium statistics proves it.
Comparison of deBroglie-Bohm to Everett

There are a multiplicity of realities in the deBroglie-Bohm pilot-wave just as much as in the Everettian universal state. Therefore, Ockham's razor prefers Everett to deBroglie-Bohm!

The additional structure in deBroglie-Bohm is underdetermined by observable data and spoils Lorentz covariance.

Macroscopic reality is an emergent pattern in the wavefunction, not the configuration of the Bohmian particles. For instance, the response of a measurement device to an impinging system is encoded in the wavefunction; the Bohmian particle's position only picks out a branch.

Responses:
All macroscopic phenomena, including mental sensations, depend on the configurations of Bohmian particles, not on the wavefunction. And the possibility of non-equilibrium statistics proves it deBroglie-Bohm, unlike Everett, has no problem with probabilities.
Responses to the measurement problem

1. Deny universality of quantum dynamics
 - Quantum-classical hybrid models
 - Collapse models

2. Deny representational completeness of ψ
 - ψ-ontic hidden variable models (e.g. deBroglie-Bohm)
 - ψ-epistemic hidden variable models

3. Deny that there is a unique outcome
 - Everett’s relative state interpretation (many worlds)

4. Deny some aspect of classical logic or classical probability theory
 - Quantum logic and quantum Bayesianism

5. Deny some other feature of the realist framework?
Responses to the measurement problem

1. Deny universality of quantum dynamics
 - Quantum-classical hybrid models
 - Collapse models

2. Deny representational completeness of ψ
 - ψ-ontic hidden variable models (e.g. deBroglie-Bohm)
 - ψ-epistemic hidden variable models

3. Deny that there is a unique outcome
 - Everett’s relative state interpretation (many worlds)

4. Deny some aspect of classical logic or classical probability theory
 - Quantum logic and quantum Bayesianism

5. Deny some other feature of the realist framework?
ψ-ontic versus ψ-epistemic approaches

Pilot-wave theories, Everett and collapse theories are all ψ-ontic
ψ-ontic versus ψ-epistemic approaches

Pilot-wave theories, Everett and collapse theories are all ψ-ontic.

But the exponentially large number of branches is suggestive of epistemic or possibilistic character (library of Babel).
ψ-ontic versus ψ-epistemic approaches

Pilot-wave theories, Everett and collapse theories are all ψ-ontic.

But the exponentially large number of branches is suggestive of epistemic or possibilistic character (library of Babel) (Although, some, such as Tegmark, see appeal in an exponentially large reality)
ψ-ontic versus ψ-epistemic approaches

Pilot-wave theories, Everett and collapse theories are all ψ-ontic.

But the exponentially large number of branches is suggestive of epistemic or possibilistic character (library of Babel) (Although, some, such as Tegmark, see appeal in an exponentially large reality)

How do these ψ-ontic interpretations explain the success of the analogy between quantum states and epistemic states?
fin