Abstract: The simulation of systems of anyons offers a significant challenge to the condensed matter physicist. These systems are presently of substantial theoretical and experimental interest due to their potential for universal quantum computation, but due to their non-trivial exchange statistics, the tools available for their study have been limited. In this talk, I will present a formalism whereby any existing tensor network algorithm may be adapted for use with both Abelian and non-Abelian anyons, culminating in our recent simulations of infinite 1-D chains of interacting anyons using the Multi-scale Entanglement Renormalisation Ansatz, or MERA, demonstrating that tensor network algorithms may be effectively employed in the study of anyonic systems.
Anyonic Tensor Network Algorithms

Robert N. C. Pfeifer

The University of Queensland
Australia
Anyons

- Non-bosonic, non-fermionic exchange statistics
- 2-D and quasi-1-D systems
- Currently a hot topic...
Tensor Network Algorithms

- Tensor network ansatz
- Update algorithm

\[|\psi\rangle = \sum c_{i_1 i_2 i_3 \ldots} |i_1, i_2, i_3, \ldots\rangle = \sum \Gamma^{(1)}_{i_1 j_1} \lambda^{(1)}_{j_1} \Gamma^{(2)}_{i_2 j_2 j_1} \lambda^{(2)}_{j_2} \Gamma^{(3)}_{i_3 j_3 j_2 j_1} \ldots |i_1, i_2, i_3, \ldots\rangle \]
Tensor Network Algorithms

- Tensor network ansatz

![Diagram of tensor network ansatz]
Tensor Network Algorithms

- Tensor network ansatz
Tensor Network Algorithms

- Tensor network ansatz
- Update algorithm
 - To construct optimised representation of the ground state
 - Time evolution
 - ...
Tensor Network Algorithms

- Tensor network ansatz

\[C_1 i_2 i_3 \ldots \]
Tensor Network Algorithms

- Tensor network ansatz
Tensor Network Algorithms

- Tensor network ansatz
Tensor Network Algorithms

- Tensor network ansatz
- Update algorithm
 - To construct optimised representation of the ground state
 - Time evolution
 - ...

Pirsa: 11010110
Tensor Networks and Fermions

- Successful description of low-dimensional bosonic systems
- Recent extension to fermionic systems in 1-D and 2-D (e.g. Corboz et al., 2009)
Tensor Networks and Fermions
Tensor Networks and Fermions

- Successful description of low-dimensional bosonic systems
- Recent extension to fermionic systems in 1-D and 2-D (e.g. Corboz et al., 2009)
- No “sign problem”
- Can we generalise this success to anyons?
Tensor Networks and Anyons

\[|\psi\rangle = \sum_{a_1 \ldots a_{10} \atop a_1 \ldots a_{10}} c_{a_1 \ldots a_{10} u_1 \ldots u_5} a_9 \]
\begin{align*}
\left| x \right| & \rightarrow 1 \\
\left| x \right| \times 2 & \rightarrow 2 \\
\tau \times 2 & \rightarrow \tau \\
\tau & \rightarrow 1 + \tau
\end{align*}
Tensor Networks and Anyons

\[|\psi\rangle = \sum_{a_1 \ldots a_{10} u_1 \ldots u_5} c_{a_1 \ldots a_{10} u_1 \ldots u_5} a_9 a_{10} \]
Tensor Networks and Anyons

\[|\psi\rangle = \]
Tensor Networks and Anyons

\[|\psi\rangle = \left(\begin{array}{c} c \end{array} \right) \]

\[\hat{M} = \left(\begin{array}{c} M \end{array} \right) \]

\[c^\alpha \quad M^\alpha_\beta \]
\[\frac{1}{2} \times 1 \rightarrow 1 \]
\[\frac{1}{2} \times 2 \rightarrow 1 \]
\[\frac{1}{2} \times \frac{1}{2} \rightarrow \frac{1}{4} \]
Tensor Networks and Anyons

\[|\psi\rangle = \sum_{\alpha} c_\alpha \}

\[\hat{M} = M \]
Tensor Networks and Anyons

\[|\psi\rangle = \sum F \quad \text{and} \quad |\psi\rangle = \sum c^\alpha c'^\alpha \]

\[\hat{M} = \text{Diagram} \]

\[c'^\alpha = \sum_{\beta} c^\beta F^{\alpha}_{\beta} \]
Tensor Networks and Anyons

\[|\psi\rangle = \quad \hat{M} = \quad \]

\[M \]

\[d \]

\[d' \]
Tensor Networks and Anyons

\[|\psi\rangle = \]

\[\hat{M} |\psi\rangle = \]

\[\hat{M} = M \]

\[c \]

\[M \]

\[c' \]
Anyonic Tensor Networks

- Anyonic states and operators
 - Allows writing of an anyonic TN state
- Rules for manipulating anyonic trees
 - Allows translation of algorithms
Anyonic MERA!
Anyonic MERA!
Anyonic MERA!
Anyonic MERA!
Golden Chain

\[1 \times 1 \rightarrow 1 \]
\[1 \times \tau \rightarrow \tau \]
\[\tau \times 1 \rightarrow \tau \]
\[\tau \times \tau \rightarrow 1 + \tau \]
Scale-Invariant MERA
Scaling Operators
\[1 \times 1 \rightarrow 1 \]
\[1 \times 2 \rightarrow 2 \]
\[2 \times 1 \rightarrow 2 \]
\[2 \times 2 \rightarrow 4 \]
\[1 + 1 = 2 \]
\[2 + 2 = 4 \]
Scaling Operators
Results

AFM Golden Chain
FM Golden Chain
Conclusions

- Anyonic tensor networks:
 - possible
 - useful
 - efficient
 - shown to work!
Conclusions

- The microscopic behaviours of anyonic systems are still largely unstudied.

Tensor networks for anyonic systems make their study possible.

With these tools, there is a great deal of research to be done!