Abstract: Shape Dynamics first arose as a theory of particle interactions formulated without any of Newton's absolute structures. Its fundamental arena is shape space, which is obtained by quotienting Newton's kinematic framework with respect to translations, rotations and dilatations. This leads to a universe defined purely intrinsically in relational terms. It is then postulated that a dynamical history is determined by the specification in shape space of an initial shape and an associated rate of change of shape. There is a very natural way to create a theory that meets such a requirement. It fully implements Mach's principle and shows how time and local inertial frames are determined by the universe as whole. If the same principles are applied to a spatially closed universe in which geometry is dynamical, they lead rather surprisingly to a theory that, modulo some caveats, is dynamically equivalent to general relativity but dual to it in that refoliation invariance is traded for three-dimensional conformal invariance. This shows that there is a hidden three-dimensional conformal symmetry within general relativity. It is in fact what underlies York's crucial method of solution of the initial-value problem in general relativity. It is also remarkable that, as in York's work, shape dynamics inescapably introduces a mathematically distinguished notion of absolute simultaneity, the desirability of which has been found in two currently popular approaches to quantum gravity: causal dynamical triangulations and Horava gravity. I aim to express the key ideas and techniques of shape dynamics as simply as possible.
Systematic Machian relativity leads to a theory of gravity
dual - and largely equivalent to - General Relativity

Machian relativity presupposes simultaneity

Preferred terminology: spatial and temporal relationalism
(E. Anderson’s talk)
THE TWO NOTIONS OF RELATIVITY

Einsteinian

Each observer makes a different split into space and time

Machian

In each instant the positions of objects are defined relative to each other

Systematic Machian relativity leads to a theory of gravity dual - and largely equivalent to - General Relativity

Machian relativity presupposes simultaneity

Preferred terminology: spatial and temporal relationalism

(E. Anderson’s talk)
THE 3-PARTICLE CONFIGURATION SPACE AS FIBRE BUNDLE

The structure group G generates fictitious vertical change.

Nature generates real horizontal change. Defining it is the central problem.
THE 3-PARTICLE CONFIGURATION SPACE AS FIBRE BUNDLE

The structure group G generates fictitious vertical change.

Nature generates real horizontal change. Defining it is the central problem.
THE PROBLEMS WITH NEWTONIAN DYNAMICS

Rotations (r) and dilatations (t) relative to the initial placing (1) do not change the observable initial data in Shape Space but do change the subsequent evolution.

By Galilean invariance, translations (t) have no effect.
The problems with Newtonian dynamics

Rotations (r) and dilatations (t) relative to the initial placing (1)
do not change the observable initial data in Shape Space
but do change the subsequent evolution.
By Galilean invariance, translations (t) have no effect.
THE MACH–POINCARÉ PRINCIPLE

Strong Mach–Poincaré Principle:

A point and a direction in Shape Space determine the evolution uniquely.

Weak Mach–Poincaré Principle:

A point and a tangent vector in Shape Space determine the evolution uniquely.

[Isenberg & Wheeler]

I will call *Shape Dynamics* any theory satisfying either form of that principle.
THE MACH–POINCARÉ PRINCIPLE

Strong Mach–Poincaré Principle:

A point and a direction in Shape Space determine the evolution uniquely.

Weak Mach–Poincaré Principle:

A point and a tangent vector in Shape Space determine the evolution uniquely.

[Isenberg & Wheeler]

I will call *Shape Dynamics* any theory satisfying either form of that principle.
Define a metric and hence geodesic principle on Shape Space using the canonically defined metric on the fibre bundle.
CREATION OF METRIC ON SHAPE SPACE BY BEST MATCHING

Arbitrary (a) and best-matched (b) placings of dashed triangle.

\[\delta_{sbm} := \min_{\delta x_a} \sqrt{W(r_{ab}) \sum_a \frac{m_a}{2} \delta x_a \cdot \delta x_a} \] between orbits. \[[W] = l^{-2} \]

Background independence: no reliance on position in space or external time
CREATION OF METRIC ON SHAPE SPACE BY BEST MATCHING

Arbitrary (a) and best-matched (b) placings of dashed triangle.

\[\delta s_{bm} := \min_{\delta x_a} \sqrt{W(r_{ab}) \sum_a \frac{m_a}{2} \delta x_a \cdot \delta x_a} \] between orbits. \([W] = l^{-2} \)

Background independence: no reliance on position in space or external time
THE SHAPE-DYNAMIC ACTION

\[A_{SD} = 2 \int d\lambda \sqrt{W T} \]

\[T = \sum_a \frac{m_a}{2} \left\| \frac{dx_a}{d\lambda} - v - \omega \times x_a - \phi x_a \right\|^2 \]

\[p_a = \sqrt{\frac{W}{T}} m_a \left(\frac{dx_a}{d\lambda} - v - \omega \times x_a - \phi x_a \right) \]

[J. Barbour, CQG 20 (2003), gr-qc/0211021v2]
THE SHAPE-DYNAMIC ACTION

\[A_{SD} = 2 \int d\lambda \sqrt{WT} \]

\[T = \sum_a \frac{m_a}{2} \left\| \frac{dx_a}{d\lambda} - v - \omega \times x_a - \phi x_a \right\|^2 \]

\[p_a = \sqrt{\frac{W}{T}} m_a \left(\frac{dx_a}{d\lambda} - v - \omega \times x_a - \phi x_a \right) \]

[J. Barbour, CQG 20 (2003), gr-qc/0211021v2]
THE SHAPE-DYNAMIC ACTION

\[A_{SD} = 2 \int d\lambda \sqrt{WT} \]

\[T = \sum_a \frac{m_a}{2} \left\| \frac{dx_a}{d\lambda} - v - \omega \times x_a - \phi x_a \right\|^2 \]

\[p_a = \sqrt{\frac{W}{T}} m_a \left(\frac{dx_a}{d\lambda} - v - \omega \times x_a - \phi x_a \right) \]

[J. Barbour, CQG 20 (2003), gr-qc/0211021v2]
MACHIAN FREE-END-POINT VARIATION

Lagrangian is sum of squares of horizontal velocities weighted by $\sqrt{W/T} m_a$

$$p_a = \sqrt{\frac{W}{T}} m_a \left(\frac{dx_a}{d\lambda} - v - \omega \times x_a - \phi x_a \right)$$
MACHIAN FREE-END-POINT VARIATION

Lagrangian is sum of squares of horizontal velocities weighted by $\sqrt{W/T \ m_a}$

$$p_a = \sqrt{\frac{W}{T}} \ m_a \left(\frac{dx_a}{d\lambda} - v - \omega \times x_a - \phi x_a \right)$$
THE LINEAR AND QUADRATIC CONSTRAINTS

The best-matched momenta p_a^{bm} satisfy

$$ p^{bm} := \sum_a p_a^{bm} = 0 \quad \text{(translational bm)} $$

$$ L^{bm} := \sum_a x_a \times p_a^{bm} = 0 \quad \text{(rotational bm)} $$

$$ D^{bm} := \sum_a x_a \cdot p_a^{bm} = 0 \quad \text{(dilatational bm)} $$

$$ \sum_a \frac{m_a}{2} p_a^{bm} \cdot p_a^{bm} = W \quad \text{(quadratic geodesic constraint)} $$

“The Universe is given only once, with its relative motions alone determinable”

(Ernst Mach, 1883).

Enlargement of structure group diminishes true motions.

Choice of structure group converts Mach’s intuition into theory.
EMERGENCE OF INERTIAL FRAMES AND NEWTONIAN DYNAMICS

Jacobi-type translationally and rotationally invariant action:

\[A_J = 2 \int d\lambda \sqrt{(E - V)T}, \quad T = \sum_a \frac{m_a}{2} \frac{dx_{a}^{bm}}{d\lambda} \cdot \frac{dx_{a}^{bm}}{d\lambda} \]

\[\frac{d}{d\lambda} \left(\sqrt{\frac{(E - V)}{T}} m_a \frac{dx_{a}^{bm}}{d\lambda} \right) = -\sqrt{\frac{T}{(E - V)} \frac{\partial V}{\partial x_{a}^{bm}}} \]

Simplify by choosing \(\lambda \) such that always \(T = E - V \). Then

\[\frac{d^2 x_{a}^{bm}}{dt^2} = -\frac{\partial V}{\partial x_{a}} \]

Newtonian dynamics emerges from Machian dynamics. For an ‘island’ universe \(P = L = 0 \). This restriction does not apply to subsystems.
EMERGENCE OF INERTIAL FRAMES AND NEWTONIAN DYNAMICS

Jacobi-type translationally and rotationally invariant action:

\[A_J = 2 \int d\lambda \sqrt{(E - V)T}, \quad T = \sum_a \frac{m_a}{2} \frac{dx_a^{bm}}{d\lambda} \cdot \frac{dx_a^{bm}}{d\lambda} \]

\[\frac{d}{d\lambda} \left(\sqrt{\frac{(E - V)}{T}} m_a \frac{dx_a^{bm}}{d\lambda} \right) = -\sqrt{\frac{T}{(E - V)}} \frac{\partial V}{\partial x_a^{bm}} \]

Simplify by choosing \(\lambda \) such that always \(T = E - V \). Then

\[\frac{d^2 x_a^{bm}}{dx^2} = -\frac{\partial V}{\partial x_a} \]

Newtonian dynamics emerges from Machian dynamics. For an ‘island’ universe \(P = L = 0 \). This restriction does not apply to subsystems.
EMERGENCE OF INERTIAL FRAMES AND NEWTONIAN DYNAMICS

Jacobi-type translationally and rotationally invariant action:

\[A_J = 2 \int \frac{d\lambda}{\sqrt{(E - V)T}}, \quad T = \sum_a \frac{m_a}{2} \frac{d^2x_{bm}^a}{d\lambda} \cdot \frac{dx_{bm}^a}{d\lambda} \]

\[\frac{d}{d\lambda} \left(\sqrt{\frac{(E - V)}{T}} \frac{m_a}{\lambda} \frac{dx_{bm}^a}{d\lambda} \right) = -\sqrt{\frac{T}{(E - V)}} \frac{\partial V}{\partial x_{bm}^a} \]

Simplify by choosing \(\lambda \) such that always \(T = E - V \). Then

\[\frac{d^2x_{bm}^a}{dt^2} = -\frac{\partial V}{\partial x_{bm}^a} \]

Newtonian dynamics emerges from Machian dynamics. For an ‘island’ universe \(P = L = 0 \). This restriction does not apply to subsystems.
EMERGENCE OF INERTIAL FRAMES AND NEWTONIAN DYNAMICS

Jacobi-type translationally and rotationally invariant action:

\[A_J = 2 \int d\lambda \sqrt{(E - V)T}, \quad T = \sum_a \frac{m_a}{2} \frac{dx_a^{bm}}{d\lambda} \cdot \frac{dx_a^{bm}}{d\lambda} \]

\[\frac{d}{d\lambda} \left(\sqrt{\frac{(E - V)}{T}} m_a \frac{dx_a^{bm}}{d\lambda} \right) = -\sqrt{\frac{T}{(E - V)}} \frac{\partial V}{\partial x_a^{bm}} \]

Simplify by choosing \(\lambda \) such that always \(T = E - V \). Then

\[\frac{d^2 x_a^{bm}}{dt^2} = -\frac{\partial V}{\partial x_a} \]

Newtonian dynamics emerges from Machian dynamics. For an ‘island’ universe \(P = L = 0 \). This restriction does not apply to subsystems.
EMERGENCE OF TIME

Newtonian dynamics emerged through choice of λ such that always $T = E - V$.

Then

$$\begin{align*}
 dt &= \sqrt{\frac{\sum_a m_a \, dx^b_m \cdot dx^b_m}{2(E - V)}}.
\end{align*}$$

“It is utterly impossible to measure the changes of things by time. Quite the contrary, time is an abstraction at which we arrive from the changes of things.”

(Ernst Mach, 1883)

Time is the ‘distillation’ of all the changes in the Universe.

Doubly holistic.

Is E an initial condition or a universal constant?
THE CONSTRUCTION OF NEWTONIAN SPACETIME

Best matching effects
horizontal stacking.

Emergent time fixes
vertical separations.

This distinguished representation reflects true physics and simplifies the equations.
THE ADM 3+1 DECOMPOSITION

\[(4)_{00} = (3)_{ij} N^i N^j - N^2, \quad (4)_{0j} = N_k, \quad (4)_{ij} = (3)_{ij} \]

Best-matching wrt 3-diffeos and 3D conformal transformations
TWO FORMS OF SCALE INVARIANCE

Strong form \(P = L = 0 \) \& \(D = 0 \) \(\implies \) \(E = 0 \).
Point and direction in shape space determine evolution.

Weaker form \(P = L = 0 \) \& \(E = 0 \) imposed.
Point and tangent vector in shape space determine evolution.

Evolution curve determined by specification of two points
\(s_1 \) and \(s_2 \) in shape space and dimensionless ratio \(Y_2/Y_1 \) at them.

\[
Y = \frac{D}{\sqrt{I_{cm}}}, \quad D = \sum_a m_a \mathbf{x}_a \cdot \mathbf{p}_a, \quad I_{cm} = \frac{1}{M} \sum_{a<b} m_a m_b r_{ab}^2 = \sum_a m_a \mathbf{x}_a^{cm} \cdot \mathbf{x}_a^{cm},
\]
TWO FORMS OF SCALE INVARIANCE

Strong form \(\mathbf{P} = \mathbf{L} = 0 \; \& \; D = 0 \implies E = 0. \)
Point and direction in shape space determine evolution.

Weaker form \(\mathbf{P} = \mathbf{L} = 0 \; \& \; E = 0 \) imposed.
Point and tangent vector in shape space determine evolution.

Evolution curve determined by specification of two points \(s_1 \) and \(s_2 \) in shape space and dimensionless ratio \(Y_2/Y_1 \) at them.

\[
Y = \frac{D}{\sqrt{I_{cm}}} , \quad D = \sum_{a} m_a x_a \cdot p_a , \quad I_{cm} = \frac{1}{M} \sum_{a<b} m_a m_b r_{ab}^2 = \sum_{a} m_a x_{cm,a} \cdot x_{cm,a} ,
\]
THE DYNAMICS OF GEOMETRY

1854: Riemann introduces metric geometry: $g_{ij}(x)$.

1870: Clifford: “I hold that ... variation of the curvature of space is what really happens in that phenomenon which we call the motion of matter.”

1872 and 1883: Mach insists all motion is relative.

1902: Poincaré formulates aim of a theory of relative motion.

1915: Einstein creates general relativity.

1918: Weyl’s critique of Riemannian geometry.
THE DYNAMICS OF GEOMETRY

1854: Riemann introduces metric geometry: $g_{ij}(x)$.

1870: Clifford: “I hold that ... variation of the curvature of space is what really happens in that phenomenon which we call the motion of matter.”

1872 and 1883: Mach insists all motion is relative.

1902: Poincaré formulates aim of a theory of relative motion.

1915: Einstein creates general relativity.

1918: Weyl’s critique of Riemannian geometry.
SUPERSPACE

Riem (\(\mathcal{M} \)) := Space of all \(g_{ij} \) defined on the closed 3-manifold \(\mathcal{M} \).

Any two 3-metrics \(g_{ij} \) that can be carried into each other by diffeomorphisms represent the same 3-geometry.

\[
\text{Superspace} := \frac{\text{Riem}}{\text{3-diffeos}}
\]

A 3-vector field \(\xi_k(x) \) generates infinitesimal diffeomorphism of \(g_{ij} \):

\[
g_{ij}(x) \rightarrow g_{ij} + \xi_{(i;j)}, \quad \xi_{(i;j)} = \xi_{i;j} + \xi_{j;i}
\]

\[
\xi_{(i;j)} = \mathcal{L}_\xi g_{ij} = (K\xi)_{ij}
\]
CONFORMAL TRANSFORMATIONS

Full conformal transformations:

\[g_{ij} \rightarrow e^{4\phi} g_{ij}, \quad \phi \in \mathbb{R}, \]

Volume-preserving conformal transformations (VPCTs):

\[g_{ij} \rightarrow e^{4\hat{\phi}} g_{ij}, \quad \hat{\phi} = \phi + \frac{1}{6} \log \left(\frac{\int d^3x \sqrt{g}}{\int d^3x \sqrt{\overline{g}} \exp 6\phi} \right) \]

VPCTs allow free changes of the local volume element \(\sqrt{g(x)} \), \(g = \det g_{ij} \)
but leave the global volume \(V = \int d^3x \sqrt{\overline{g}} \) unchanged.
CONFORMAL TRANSFORMATIONS

Full conformal transformations:

\[g_{ij} \rightarrow e^{4\phi} g_{ij}, \quad \phi \in \mathbb{R}, \]

Volume-preserving conformal transformations (VPCTs):

\[g_{ij} \rightarrow e^{4\hat{\phi}} g_{ij} \quad \hat{\phi} = \phi + \frac{1}{6} \log \left(\frac{\int d^3x \sqrt{g}}{\int d^3x \sqrt{g} \exp 6\phi} \right) \]

VPCTs allow free changes of the local volume element \(\sqrt{g(x)} \), \(g = \det g_{ij} \)
but leave the global volume \(V = \int d^3x \sqrt{g} \) unchanged.
CONFORMAL TRANSFORMATIONS

Full conformal transformations:

\[g_{ij} \rightarrow e^{4\phi} g_{ij}, \quad \phi \in \mathbb{R}, \]

Volume-preserving conformal transformations (VPCTs):

\[g_{ij} \rightarrow e^{4\phi} g_{ij} \quad \hat{\phi} = \phi + \frac{1}{6} \log \left(\frac{\int d^3x \sqrt{\bar{g}}}{\int d^3x \sqrt{g} \exp 6\phi} \right) \]

VPCTs allow free changes of the local volume element \(\sqrt{g(x)} \), \(g = \det g_{ij} \) but leave the global volume \(V = \int d^3x \sqrt{\bar{g}} \) unchanged.
CONFORMAL SUPERSPACES

The Geometrical Group \mathcal{G}: The group whose elements consist of combinations of conformal transformations and diffeomorphisms.

Any two 3-metrics g_{ij} that can be carried into each other by elements of \mathcal{G} represent the same conformal 3-geometry.

Conformal Superspace (CS) := $\frac{\text{Riem}}{\mathcal{G}}$

The Restricted Geometrical Group \mathcal{G}^*: VPCTs and diffeomorphisms.

Conformal Superspace+Volume (CS+V) := $\frac{\text{Riem}}{\mathcal{G}^*}$
CONFORMAL SUPERSPACES

The Geometrical Group \mathcal{G}: The group whose elements consist of combinations of conformal transformations and diffeomorphisms.

Any two 3-metrics g_{ij} that can be carried into each other by elements of \mathcal{G} represent the same conformal 3-geometry.

Conformal Superspace (CS) := \frac{\text{Riem}}{\mathcal{G}}

The Restricted Geometrical Group \mathcal{G}^*: VPCTs and diffeomorphisms.

Conformal Superspace+Volume (CS+V) := \frac{\text{Riem}}{\mathcal{G}^*}
GEOMETRICAL FIBRE BUNDLES

Adding matter fields change base space.
Actions for Geometrodynamics

Global square root

\[A_{\text{GSR}} = \int dt \sqrt{\int d^3x \sqrt{g} W \int d^3x \sqrt{g} T} \quad \Rightarrow \quad 3 \text{ local degrees of freedom} \]

\(W \) is a 3-scalar, \(g = \text{det} g_{ij} \)

\[T = \left(g^{ik} g^{jl} - \lambda g^{ij} g^{kl} \right) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt} \quad \lambda = 1 \text{ for DeWitt supermetric} \]

Local square root

\[A_{\text{LSR}} = \int dt \int d^3x \sqrt{g} \sqrt{WT} \]

(input from Karel Kuchař and Niall Ó Murchadha)
ACTIONS FOR GEOMETRODYNAMICS

Global square root

\[A_{\text{GSR}} = \int dt \sqrt{\int d^3x \, \sqrt{g\,W} \int d^3x \, \sqrt{g\,T}} \quad \Rightarrow \quad 3 \text{ local degrees of freedom} \]

\(W \) is a 3-scalar, \(g = \det g_{ij} \)

\[T = \left(g^{ik}g^{jl} - \lambda g^{ij}g^{kl} \right) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt} \]

\(\lambda = 1 \) for DeWitt supermetric

Local square root

\[A_{\text{LSR}} = \int dt \int d^3x \sqrt{g} \sqrt{WT} \]

(input from Karel Kuchař and Niall Ó Murchadha)
Actions for Geometrodynamics

Global square root

$$A_{\text{GS}} = \int dt \sqrt{\int d^3 x \sqrt{g} W} \int d^3 x \sqrt{g} T$$

implies 3 local degrees of freedom

W is a 3-scalar, $g = \det g_{ij}$

$$T = \left(g^{ik} g^{jl} - \lambda g^{ij} g^{kl}\right) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt}$$

$\lambda = 1$ for DeWitt supermetric

Local square root

$$A_{\text{LSR}} = \int dt \int d^3 x \sqrt{g} \sqrt{WT}$$

(input from Karel Kuchař and Niall Ó Murchadha)
ACTIONS FOR GEOMETRODYNAMICS

Global square root

\[A_{\text{GSR}} = \int dt \sqrt{\int d^3x \sqrt{g} W \int d^3x \sqrt{g} T} \quad \Rightarrow \quad 3 \text{ local degrees of freedom} \]

\(W \) is a 3-scalar, \(g = \det g_{ij} \)

\[T = \left(g^{ik} g^{jl} - \lambda g^{ij} g^{kl} \right) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt} \quad \lambda = 1 \text{ for DeWitt supermetric} \]

Local square root

\[A_{\text{LSR}} = \int dt \int d^3x \sqrt{g} \sqrt{WT} \]

(input from Karel Kuchař and Niall Ó Murchadha)
ACTIONS FOR GEOMETRODYNAMICS

Global square root

\[A_{\text{GSR}} = \int dt \sqrt{\int d^3x \sqrt{g} W \int d^3x \sqrt{g} T} \quad \Rightarrow \quad 3 \text{ local degrees of freedom} \]

\(W \) is a 3-scalar, \(g = \det g_{ij} \)

\[T = \left(g^{ik} g^{jl} - \lambda g^{ij} g^{kl} \right) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt} \quad \lambda = 1 \text{ for DeWitt supermetric} \]

Local square root

\[A_{\text{LSR}} = \int dt \int d^3x \sqrt{g} \sqrt{W T} \]

(input from Karel Kuchař and Niall Ó Murchadha)
Actions for Geometrodynamics

Global square root

\[A_{GSR} = \int dt \sqrt{\int d^3 x \sqrt{g} W \int d^3 x \sqrt{g} T} \quad \Rightarrow \quad 3 \text{ local degrees of freedom} \]

W is a 3-scalar, \[g = \text{det} g_{ij} \]

\[T = \left(g^{ik} g^{jl} - \lambda g^{ij} g^{kl} \right) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt} \quad \lambda = 1 \text{ for DeWitt supermetric} \]

Local square root

\[A_{LSR} = \int dt \int d^3 x \sqrt{g} \sqrt{W T} \]

(input from Karel Kuchař and Niall Ó Murchadha)
CONSTRAINTS FOR LOCAL SQUARE ROOTS

Quadratic constraint:

\[
\left(g_{ik} g_{jl} - \frac{\lambda}{3\lambda - 1} g_{ij} g_{kl} \right) p^{ij} p^{kl} + W = 0 \quad \text{(identical to GR if } W = 2\Lambda - 3R \text{ and } \lambda = 1) \]

at each space point.

Linear constraint:

\[
p^{ij}_{\ ;j} = 0 \quad \text{(this is the ADM momentum constraint)}
\]

from Machian free-end-point variation, equivalent to the introduction of the Lagrange multiplier \(\xi_j \):

\[
\frac{dg_{ij}}{dt} \rightarrow \frac{dg_{ij}}{dt} - \xi_{(i;j)}
\]

22
LOCAL SQUARE ROOT AS THEORY SELECTOR

Ó Murchadha noted that very few consistent theories with local square root exist. GR, with $W = 2\Lambda - 3R$ and $\lambda = 1$ is one of them.

Also possible is:

$$W = 2\Lambda - 3R \quad \text{and} \quad \lambda \neq 1$$

at the cost of introducing the further constraints:

$$g_{ij} p^{ij} = \sqrt{g} T, \quad T = \text{spatial constant}$$

and to perform Dirac’s analysis of second-class systems.

Also very interesting is the coupling to matter.

(see F. Mercati’s talk in “Conformal Nature of the Universe” workshop)
LOCAL SQUARE ROOT AS THEORY SELECTOR

Ó Murchadha noted that very few consistent theories with local square root exist. GR, with $W = 2\Lambda - \frac{3}{2}R$ and $\lambda = 1$ is one of them.

Also possible is:

$$W = 2\Lambda - \frac{3}{2}R \quad \text{and} \quad \lambda \neq 1$$

at the cost of introducing the further constraints:

$$g_{ij}p^{ij} = \sqrt{g}T, \quad T = \text{spatial constant}$$

and to perform Dirac’s analysis of second-class systems.

Also very interesting is the coupling to matter.

(see F. Mercati’s talk in “Conformal Nature of the Universe” workshop)
CONFORMALLY NON-INARIANT ACTIONS

\[A_{\text{Conf}} = \int dt \int d^3x \sqrt{g} \sqrt{(2\Lambda - 3R)T} \]

\(T \) is conformally covariant but

\[g_{ij} \rightarrow e^{4\phi} g_{ij}, \quad (R \rightarrow \tilde{R} = e^{-4\phi} R - 8e^{-5\phi} \nabla^2 e^\phi). \]

The conformal non-invariance of \(R \) is the basis of York’s method for finding solutions to the initial-value problem of general relativity.

Leads to all of the potentially interesting aspects of Conformal Shape Dynamics.

(Input of Niall Ó Murchadha)
CONFORMALLY NON-INARIANT ACTIONS

\[A_{\text{Conf}} = \int dt \int d^3x \sqrt{g} \sqrt{(2\Lambda - 3R)T} \]

\(T \) is conformally covariant but

\[g_{ij} \rightarrow e^{4\phi} g_{ij}, \quad (R \rightarrow \tilde{R} = e^{-4\phi} R - 8e^{-5\phi} \nabla^2 e^\phi). \]

The conformal non-invariance of \(R \) is the basis of York’s method
for finding solutions to the initial-value problem of general relativity.

Leads to all of the potentially interesting aspects of Conformal Shape Dynamics.

(Input of Niall Ó Murchadha)
EQUIVARIANT AND NONEQUIVARIANT ACTIONS

\[\frac{\delta L}{\delta \phi'} = 0 \]

\[\frac{\delta L}{\delta \phi} = 0 \]

trivial condition

\[\frac{\delta L}{\delta \phi'} = 0 \]

nontrivial condition

\[\frac{\delta L}{\delta \phi} = 0 \]

Shape Space

Shape Space

Standard Gauge Theory (equivariant) Generalized Gauge Theory (non equivariant)

\(\phi \) changes height, \(\phi' \) changes angle

26
FULLY SCALE-INVARIANT CONFORMAL GEOMETRODYNAMICS

\[A_{\text{Conf}} = \int dt \int d^3 x \sqrt{g} \frac{\sqrt{2\Lambda - 3R} T}{\sqrt{2/3}} \]

\[V = \int d^3 x \sqrt{g}, \quad T = (g^{ik} g^{jl} - g^{ij} g^{kl}) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt}, \]

Homogeneous in \(g \). The universe can’t expand.

Machian free-end-point variation leads to unique curve in Superspace for fixed end points in Conformal Superspace.
NEARLY SCALE-INARIANT CONFORMAL GEOMETRODYNAMICS

\[A_{SD} = \int dt \int d^3 x \sqrt{g} \sqrt{(2\Lambda - 3R)T}, \quad T = (g^{ik} g^{jl} - g^{ij} g^{kl}) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt}, \]

Action on Riem identical to lapse-eliminated ADM action but varied more stringently. Everything except conformal geometry and total volume treated as gauge and subject to Machian free-end-point variation

NEARLY SCALE-IN Variant CONFORMAL GEOMETRODYNAMICS

\[A_{SD} = \int dt \int d^3x \sqrt{g} \sqrt{(2\Lambda - 3R)} T, \quad T = \left(g^{ik} g^{jl} - g^{ij} g^{kl} \right) \frac{dg_{ij}}{dt} \frac{dg_{kl}}{dt}, \]

Action on Riem \textit{identical} to lapse-eliminated ADM action but varied more stringently. Everything except conformal geometry and total volume treated as gauge and subject to Machian free-end-point variation.

[Anderson, Barbour, Foster, Kelleher, Ó Murchadha, \textit{The physical gravitational degrees of freedom}, CQG 22 (2005)]
The Constraints of Shape Dynamics

\[p^{ij} := \frac{\delta A_{SD}}{\delta g_{ij}} \quad p = g_{ij} p^{ij}, \quad \sigma^{ij} := p^{ij} - \frac{1}{3} g^{ij} p \]

Diffeomorphism constraint: \(p^{ij}_{;j} = 0 \).

Conformal constraint: \(\frac{D}{\sqrt{g}} = C(\lambda) \) (spatial constant).

With these two, quadratic constraint leads to modified Lichnerowicz–York eqn:

\[\sigma^{ij} \sigma_{ij} - \frac{1}{6} g^{ij} p^2 \ \hat{\phi}^{12} - g \hat{\phi}^8 \left(R - 8 \frac{\nabla^2 \hat{\phi}}{\hat{\phi}} \right) = 0. \]

Consistency condition \(\delta A_{SD}/\delta \phi = 0 \) leads to Lapse-fixing condition:

\[N \hat{\phi}^{-4} \left(R - 8 \frac{\nabla^2 \hat{\phi}}{\hat{\phi}} \right) - \hat{\phi}^{-6} \nabla_i (\hat{\phi}^2 \nabla^i N) + \frac{NC^2}{4} = D \quad (D \text{ spatial constant}) \]
CONCERT-MEAN-CURVATURE (CMC) FOLIATIONS

Analogous to soap bubbles in three dimensions.

Used by York to solve initial-value problem of GR.

The mean extrinsic curvature C increases monotonically.
CONSTANT-MEAN-CURVATURE (CMC) FOLIATIONS

Analogous to soap bubbles in three dimensions.

Used by York to solve initial-value problem of GR.

The mean extrinsic curvature C increases monotonically.
The Two Gauge Theories on One Phase Space

The Theory of Gomes, Gryb and Koslowski.
(see their talks in “Conformal Nature of the Universe” workshop)

The two first-class constraint surfaces gauge-fix each other:
“Doubly General Relativity”
THE TWO GAUGE THEORIES ON ONE PHASE SPACE

The Theory of Gomes, Gryb and Koslowski.
(see their talks in “Conformal Nature of the Universe” workshop)

The two first-class constraint surfaces gauge-fix each other:
“Doubly General Relativity”