Title: Gravitational RG flows on foliated spacetimes

Date: Apr 24, 2014 04:30 PM

URL: http://pirsa.org/14040106

Abstract: The role of time and a possible foliation structure of spacetime are longstanding questions which lately received a lot of renewed attention from the quantum gravity community. In this talk, I will review recent progress in formulating a Wetterich-type functional renormalization group equation on foliated spacetimes and outline its potential applications. In particular, I will discuss first results concerning the RG flow of Horava-Lifshitz gravity, highlighting a possible mechanism for a dynamical Lorentz-symmetry restoration at low energies.
Gravitational RG flows from foliated spacetimes

Frank Saueressig
Research Institute for Mathematics, Astrophysics and Particle Physics
Radboud University Nijmegen

A. Contillo, S. Rechenberger, F.S., JHEP 1312 (2013) 017
G. D’Odorico, F.S., in preparation

Renormalization group approaches to quantum gravity
Perimeter Institute, April 24, 2014
Outline

- Hořava-Lifshitz gravity from a Wilsonian viewpoint

- Wetterich equation for projective Hořava-Lifshitz gravity

- Constructing RG flows:
 - finite-temperature type computations
 - anisotropic heat-kernels

- Conclusions
Quantum Gravity
from a Wilsonian perspective
Theory space underlying the Functional Renormalization Group

\[\Gamma_0 = \Gamma \quad \text{effective action} \]

\[\Gamma = \Gamma_* \quad \sim \text{bare action} \]

\[\Gamma_\infty = \Gamma_* \]
Fixed points of the RG flow

Fixed points \{g^*_i\}: Central ingredient in Wilsons picture of renormalization

- \(\beta \)-functions vanish: \((\beta_{g_i}(g_i)|_{g_i=g^*_i} = 0) \)
 - RG-trajectories may “end” at a UV-fixed point
- dimensionless couplings remain finite
 - absence of unphysical UV divergences

Perturbations of fixed point theory controlled by stability matrix

\[
B_{ij} \equiv \frac{\partial \beta_{g_j}}{\partial g_i} \bigg|_{g_i=g^*_i}
\]

- 2 classes of scaling directions:
 - relevant = attracted to FP in UV
 - irrelevant = repelled from FP in UV
- predictivity:
 - finite number of relevant directions
Proposals for UV fixed points (incomplete...)

- **isotropic Gaussian Fixed Point (GFP)**
 - fundamental theory: Einstein-Hilbert action
 - perturbation theory in G_N

- **isotropic Gaussian Fixed Point (GFP)**
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling

- **non-Gaussian Fixed Point (NGFP)**
 - fundamental theory: interacting
 - Lorentz-invariant, non-perturbatively renormalizable

- **anisotropic Gaussian Fixed Point (aGFP)**
 - fundamental theory: Hořava-Lifshitz gravity
 - Lorentz-violating, perturbatively renormalizable

Gravity
Embedding of QEG in Hořava-Lifshitz gravity

Theory space: Horava-Lifshitz
Symmetry: foliation preserving

Subspace: Quantum Einstein Gravity
Symmetry: diffeomorphisms

NGFP → GFP

β

aGFP

A[N, N_{a\sigma_{ab}}]
Wetterich equation
for projective Hořava-Lifshitz gravity
projective Hořava-Lifshitz gravity in a nutshell

central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: \(\{N(\tau), N_i(\tau, x), \sigma_{ij}(\tau, x)\} \)

symmetry: \(\text{Diff}(\mathcal{M}, \Sigma) \subset \text{Diff}(\mathcal{M}) \)

- breaks Lorentz-invariance at high energies

Can construct the effective average action for projective HL-gravity

- scale-dependence governed by functional renormalization group equation

\[k\partial_k \Gamma_k[\phi, \bar{\phi}] = \frac{1}{2} \text{STr} \left[\left(\Gamma_k^{(2)} + \mathcal{R}_k \right)^{-1} k\partial_k \mathcal{R}_k \right] \]

- Complication: anisotropic models have two correlation lengths
RG flows for projective HL gravity
finite temperature type computations
Foliated functional renormalization group equation

Flow equation: formally the same as in covariant construction

\[k \partial_k \Gamma_k[h, h_i, h_{ij}; \sigma_{ij}] = \frac{1}{2} \text{STr} \left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} k \partial_k R_k \right] \]

- covariant: \(M^4 \)
 \[\text{STr} \approx \sum_{\text{fields}} \int d^4 p \]

- foliated: \(S^1 \times M^3 \)
 \[\text{STr} \approx \sqrt{\epsilon} \sum_{\text{component fields}} \sum_{\text{KK-modes}} \int d^3 p \]
 - structure resembles: quantum field theory at finite temperature!

Advantages of the foliated flow equation:

- captures RG-flow on theory space of Hořava-Lifshitz gravity
- same structure as CDT
- \(\epsilon \)-dependence: keep track of signature effects
ADM-decomposed Einstein-Hilbert truncation

fundamental fields: $\{N(\tau), N_i(\tau, x), \sigma_{ij}(\tau, x)\}$

ADM-decomposed Einstein-Hilbert action:

$$\Gamma_k^{ADM} = \frac{\sqrt{\epsilon}}{16\pi G_k} \int d\tau d^3 x N \sqrt{\sigma} \left\{ \epsilon^{-1} \sum_{ij} K_{ij} \left[\sigma^{ik} \sigma^{jl} - \sigma^{ij} \sigma^{kl} \right] K_{kl} \right\} + \frac{R^{(3)}}{2} + 2\Lambda_k$$

- lives on foliation $S^1_T \times M^{(3)}$
- running couplings: G_k, Λ_k
- signature parameter ϵ

β-functions depend parametrically on $m = \frac{2\pi T_k}{\epsilon}$:

$$k \partial_k g_k = \beta_g(g, \lambda; m), \quad k \partial_k \lambda_k = \beta_\lambda(g, \lambda; m)$$

- m: anisotropy between cutoff in spatial/time direction
result: signature dependence of NGFP

for m finite NGFPs separate:

- $\epsilon = +1$: Euclidean signature (blue)
- $\epsilon = -1$: Lorentzian signature (magenta)
result: phase diagrams

covariant computation

Euclidean

Lorentzian
RG-flows of HL-gravity in the IR

A. Contillo, S. Rechenberger, F.S., JHEP 1312 (2013) 017

RG-flow of anisotropic Einstein-Hilbert truncation

\[\Gamma_k^{\text{grav}}[N, N_i, \sigma_{ij}] = \frac{1}{16\pi G_k} \int d\tau d^3 x N \sqrt{g} \left[K_{ij} K^{ij} - \lambda_k K^2 - \lambda^{(3)} R + 2\Lambda_k \right] \]

Fixed points of the beta functions:

- Wheeler-de Witt metric ⇒ line of GFPs
 \[\tilde{G}_* = 0, \quad \tilde{\Lambda}_* = 0, \quad \lambda = \lambda_* \]
 - one IR attractive, one IR repulsive, one marginal direction

- NGFP:
 \[\tilde{G}_* = 0.49, \quad \tilde{\Lambda}_* = 0.17, \quad \lambda = 0.44 \]
 - three UV-attractive eigen-directions
 - imprint of Asymptotic Safety

- aGFP providing UV-limit of HL-gravity not in truncation
Hořava-Lifshitz gravity: recovering general relativity in the IR
Scale-dependence of dimensionful couplings

GFP governs IR-behavior of HL-gravity
small value of cosmological constant makes λ compatible with experiments
RG flows for projectable HL gravity
anisotropic heat-kernels
Zooming into the aGFP in $D = 3 + 1$

Compute matter-induced gravitational β-functions

$$\Gamma_k = \Gamma_k^{HL} + S^{LM}$$

where

$$\Gamma_k^{HL} = \frac{1}{16\pi G_k} \int dt d^3 x \sqrt{\sigma} \left[(K_{ij} K^{ij} - \lambda_k K^2) - g_7 R \Delta_x R - g_8 R_{ij} \Delta_x R^{ij} + \ldots \right]$$

$$S^{LM} = \frac{1}{2} \int dt d^3 x \sqrt{\sigma} \left[\phi (\Delta_t + (\Delta_x)^z) \phi \right]$$

- 8 running couplings including two wave-function renormalizations

key ingredient: anisotropic Laplace operator

$$D = \Delta_t + (\Delta_x)^z$$

$$\Delta_t = -\sqrt{\sigma}^{-1} \partial_t \sqrt{\sigma} \partial_t , \quad \Delta_x = -\sigma^{ij} (t, x) D_i D_j$$
Zooming into the aGFP in $d = 4$

Compute matter-induced gravitational β-functions

$$\Gamma_k = \Gamma_k^{\text{HL}} + S^{\text{LM}}$$

where

$$\Gamma_k^{\text{HL}} = \frac{1}{16\pi G_k} \int dt d^3 x \sqrt{\sigma} \left[(K_{ij} K^{ij} - \lambda_k K^2) - g_7 R \Delta x R - g_8 R_{ij} \Delta x R^{ij} + \ldots \right]$$

$$S^{\text{LM}} = \frac{1}{2} \int dt d^3 x \sqrt{\sigma} \left[\phi (\Delta t + (\Delta x)^2) \right] \phi$$

- expansion: $\sigma_{ij} = \delta_{ij} + \sqrt{16\pi G_k} h_{ij}$

Gravitational propagators (flat space):

$$[G_{s=2}(\omega, p)] \propto \omega^2 - g_8 p^6$$

$$[G_{s=0}(\omega, p)] \propto \left(\frac{1}{3} - \lambda_k \right) \left(\omega^2 - \frac{1}{3 - \lambda_k} \left(\frac{8}{9} g_7 + \frac{1}{3} g_8 \right) p^6 \right)$$
Heat kernel expansion of anisotropic operators

FRGE computations use heat-kernel expansion of Laplacian \(\Delta \equiv -g^{\mu\nu} D_\mu D_\nu \)

\[
\text{Tr} e^{-s\Delta} \simeq \frac{1}{(4\pi s)^{d/2}} \int d^d x \sqrt{g} \sum_{n \geq 0} s^n a_{2n}
\]

\[
\simeq \frac{1}{(4\pi s)^{d/2}} \int d^d x \sqrt{g} \left[1 + \frac{s}{6} R + \ldots \right]
\]

Heat kernel expansion of anisotropic operators

\(D \equiv \Delta_t + (\Delta_x)^z \)

- apply the “Universal Renormalization Group Machine”

\[
\text{Tr} e^{-sD} \simeq (4\pi)^{-(d+1)/2} s^{1/2 (1+d/z)} \int dt d^d x \sqrt{\sigma} \left[\frac{s}{6} \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{d+2}{2})} \left(\frac{d-s+3}{d+2} K^2 - \frac{d+2z}{d+2} K_{ij} K^{ij} \right) + \sum_{n \geq 0} s^{n/z} b_n a_{2n} \right]
\]
Heat kernel coefficients for anisotropic operators

<table>
<thead>
<tr>
<th></th>
<th>$d = 2$</th>
<th></th>
<th>$d = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z = 1$</td>
<td>1</td>
<td>$\frac{\sqrt{\pi}}{2}$</td>
<td>1</td>
</tr>
<tr>
<td>$z = 2$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$z = 3$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b_3</td>
<td>1</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>b_4</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

- $z = 1$: reproduces standard heat-kernel
- $z = 2, d = 2$: reproduces

[M. Baggio, J. de Boer and K. Holsheimer, arXiv:1112.6416]

- d even: zero coefficients in heat kernel expansion
matter-induced RG flows in $d = 4$

UV attractive anisotropic GFP

$G^* = 0, \quad \lambda^* = 1/3, \quad g_{7}^* = \frac{5\pi}{84}, \quad g_{8}^* = \frac{\pi}{42}$
Embedding of QEG in Hořava-Lifshitz gravity

Theory space: Horava-Lifshitz
Symmetry: foliation preserving

Subspace: Quantum Einstein Gravity
Symmetry: diffeomorphisms

NGFP \rightarrow GFP
$\beta \rightarrow aGFP$

$A[N, N_a \sigma_{ab}]$
Conclusions
Conclusions

Wetterich equation for projectable HL gravity

- powertool for constructing RG flows in anisotropic gravity
- two correlation lengths

theory space of projective HL gravity

- contains NGFP from asymptotic safety
- GFP capable of providing IR completion

matter-induced RG flow possesses anisotropic GFP:

\[G^* = 0, \quad \lambda^* = 1/3, \quad g_7^* = \frac{5\pi}{34}, \quad g_8^* = \frac{\pi}{42} \]

- anisotropic GFP is UV attractive in \(G_k \)

projective HL gravity is asymptotically free at large \(N \)