Title: (Jean-Sebastien Caux) Exact solutions for quenches in 1d Bose gases and quantum spin chains

Date: May 15, 2014 09:00 AM

URL: http://pirsa.org/14050081

Abstract:
Exact solutions for quenches in 1d Bose gases and quantum spin chains

Quantum Many-Body Dynamics Workshop, Perimeter Institute, 15 May 2014

Jean-Sébastien Caux
Universiteit van Amsterdam

Work done in collaboration with (among others):
Bethe Ansatz (1931)

Integrable Hamiltonian:

\[H = \int_0^L dx \hat{H}(x) \]

"Reference state": vacuum, FM state,

"Particles": atoms, down spins,
Bethe Ansatz (1931)

Integrable Hamiltonian:

$$H = \int_0^L dx \, H(x)$$

“Reference state”: vacuum, FM state, ...

“Particles”: atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

$$\Psi_N(\{x\}| \{\lambda\}) = \sum_{F} (-1)^{|F|} A_F(\{\lambda\}) e^{ix_{\lambda_j}^{(\lambda)}(\lambda_j \cdot \rho_j)}$$
Bethe Ansatz (1931)

Integrable Hamiltonian:

$$H = \int_0^L dx \mathcal{H}(x)$$

"Reference state": vacuum, FM state, ...

"Particles": atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):

$$\Psi_N(\{x\},\{\lambda\}) = \sum_P (-1)^{|P|} A_P(\{\lambda\}) e^{i\sum_{j<k}(\lambda_j - \lambda_k)}$$

... and obeying some form of Pauli principle.
Bethe Ansatz (1931)

Integrable Hamiltonian:
\[H = \int_0^L dx \mathcal{H}(x) \]

'Reference state': vacuum, FM state, ...

'Particles': atoms, down spins, ...

Exact many-body wavefunctions (in N-particle sector):
\[\Psi_N(\{x\}|\{\lambda\}) = \sum_P (-1)^{[P]} A_P(\{\lambda\}) e^{ix_jk(\lambda_{P_j})} \]

... and obeying some form of Pauli principle
The general idea, simply stated:

Start with your favourite quantum state
(expressed in terms of Bethe states)

$\mathcal{O} \rightarrow |\{\lambda\}\rangle$

Apply some operator on it

Reexpress the result in the basis of Bethe states:

$\mathcal{O} |\{\lambda\}\rangle = \sum_{\{\mu\}} F^\mathcal{O}_{\{\mu\},\{\lambda\}} |\{\mu\}\rangle$

using ‘matrix elements’ $F^\mathcal{O}_{\{\mu\},\{\lambda\}} = \langle \{\mu\}|\mathcal{O}|\{\lambda\}\rangle$
The simple pendulum on its head
The Kapitza pendulum
Out-of-equilibrium using integrability
It's possible to treat some situations using
ABA-based reasonings
BEC to repulsive Lieb-Liniger quench
Interacting Bose gas (Lieb-Liniger)

\[\mathcal{H}_N = -\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2} + 2c \sum_{1 \leq j < l \leq N} \delta(x_j - x_l) \]

Exact eigenstates from Bethe Ansatz:

\[\Psi(x|\lambda) = F_{\lambda} \sum_{P \in S_N} A_P(x|\lambda) \prod_{j=1}^{N} e^{i\lambda x_j} \]

\[F_{\lambda} = \frac{\prod_{j=1}^{N} (\lambda_j - \lambda_k)}{\sqrt{N!} \prod_{j<k} ((\lambda_j - \lambda_k)^2 + c^2)} \]

\[A_P(x|\lambda) = \prod_{j<k} \left(1 - \frac{ic \text{ sgn}(x_j - x_k)}{\lambda_{P_j} - \lambda_{P_k}} \right) \]
BEC vs Tonks-Girardeau

Intuitive picture

BEC
\(c = 0\)
Quench from BEC to repulsive gas

Start from GS of noninteracting theory,

\[|0_N \rangle \equiv \frac{1}{\sqrt{L^N N!}} \left(\psi^\dagger_{k=0} \right)^N |0\rangle \]

Turn repulsive interactions on from \(t=0 \) onwards:
Quench from BEC to repulsive gas

Start from GS of noninteracting theory,

\[|0_N\rangle \equiv \frac{1}{\sqrt{L^N N!}} \left(\psi_{k=0}^\dagger \right)^N |0\rangle \]

Turn repulsive interactions on from t=0 onwards:

particles 'repel away' from each other, system heats up, momentum distribution broadens, ...
Adilet Imambekov
1982-2012
GGE approach to BEC-LL quench (take I)

Kormos, Shashi, Chou and Imambekov, arXiv:1204.3889

Conserved charges:

\[\hat{Q}_n : \hat{Q}_n \{\lambda\}_N = Q_n \{\lambda\}_N \]

\[Q_n \{\lambda\}_N = \sum_{j=1}^{N} \lambda_j^n \]
GGE approach to BEC-LL quench (take I)

Kormos, Shashi, Chou and Imambekov, arXiv:1204.3889

Conserved charges:

\[\hat{Q}_n : \hat{Q}_n \{ \lambda \}_N = Q_n \{ \lambda \}_N \]

\[Q_n \{ \lambda \}_N = \sum_{j=1}^{N} \lambda_j^n \]

Field operator representation:

\[Q_{2n} = \int dx \left(\{ \text{derivative terms} \} + A_n \ c^n \ [\psi(x)]^n \psi^n(x) \right) \]

Idea: evaluate these (local) operators on BEC state!
GGE approach to BEC-LL quench (take I)

Conserved charges:

\[\hat{Q}_n : \hat{Q}_n \langle \{\lambda\}_N \rangle = Q_n \langle \{\lambda\}_N \rangle \]

\[Q_n (\{\lambda\}_N) = \sum_{j=1}^{N} \lambda_j^n \]

Field operator representation:

\[Q_{2n} = \int dx \left(\{\text{derivative terms}\} + A_n \ e^n \left[\psi^\dagger(x) \right]^n \psi^n(x) \right) \]

Idea: evaluate these (local) operators on BEC state!
GGE approach to BEC-LL quench (take 1)

GGE conditions become condition on moments

\[\int d\lambda \rho(\lambda) \lambda^m = 2^m \frac{(2m - 1)!!}{(m+1)!} n^{2m+1} \gamma^m \]
GGE approach to BEC-LL quench (take 1)

GGE conditions become condition on moments

$$\int d\lambda \rho(\lambda) \lambda^{2m} = 2^m (2m - 1)!! \frac{(m + 1)!}{n^{2m+1} \gamma^m}$$

Solution found as 'semicircle law'

$$\rho(\lambda) = \frac{1}{\pi \sqrt{\gamma}} \sqrt{1 - \frac{\lambda^2}{\lambda_*^2}}, \quad \lambda_* = 2n \sqrt{\gamma}$$
GGE approach to BEC-LL quench (take 1)

GGE conditions become condition on moments

\[\int d\lambda \rho(\lambda) \lambda^{2m} = 2^m \frac{(2m - 1)!!}{(m + 1)!} n^{2m+1} \gamma^m \]

Solution found as ‘semicircle law’

\[\rho(\lambda) = \frac{1}{\pi \sqrt{\gamma}} \sqrt{1 - \frac{\lambda^2}{\lambda^2_*}} \quad \lambda_* = 2n \sqrt{\gamma} \]

This is all very nice and beautiful.
Evaluated carefully, the higher charges have infinite expectation values!

J-SC and J. Mossel, unpublished
Evaluated carefully, the higher charges have infinite expectation values!

Explicit calculations with few particles:
Overlaps fall off at large rapidity as $c_\lambda \sim 1/\lambda^2$

J-SC and J. Mossel, unpublished
Evaluated carefully, the higher charges have infinite expectation values!

Explicit calculations with few particles:
Overlaps fall off at large rapidity as $c_\lambda \sim 1/\lambda^2$

Therefore, we have $\langle Q_2 \rangle \sim \sum_\lambda |c_\lambda|^2 \lambda^2 \sim \text{finite}$
Evaluated carefully, the higher charges have infinite expectation values! J-SC and J. Mossel, unpublished

Explicit calculations with few particles:
Overlaps fall off at large rapidity as \(c_\lambda \sim 1/\lambda^2\)

Therefore, we have \(\langle Q_2 \rangle \sim \sum_\lambda |c_\lambda|^2 \lambda^2 \sim \text{finite}\)

but \(\langle Q_4 \rangle \sim \sum_\lambda |c_\lambda|^2 \lambda^4 \sim \sum_\lambda 1 \sim \delta(x = 0) \rightarrow \infty\)

and even worse divergences for higher charges
Evaluated carefully, the higher charges have infinite expectation values! [J-SC and J. Mossel, unpublished]

Explicit calculations with few particles:

Overlaps fall off at large rapidity as $c_\lambda \sim 1/\lambda^2$

Therefore, we have $\langle Q_2 \rangle \sim \sum \lambda |c_\lambda|^2 \lambda^2 \sim \text{finite}$

but $\langle Q_4 \rangle \sim \sum \lambda |c_\lambda|^2 \lambda^4 \sim \sum \lambda 1 \sim \delta(x = 0) \to \infty$

and even worse divergences for higher charges

Problem: mismatching ‘cusp’ condition on wavefunctions
Evaluated carefully, the higher charges have infinite expectation values!

Explicit calculations with few particles:

Overlaps fall off at large rapidity as \(c_\lambda \sim 1/\lambda^2 \)

Therefore, we have \(\langle Q_2 \rangle \sim \sum_\lambda |c_\lambda|^2 \lambda^2 \sim \text{finite} \)

but \(\langle Q_4 \rangle \sim \sum_\lambda |c_\lambda|^2 \lambda^4 \sim \sum_\lambda 1 \sim \delta(x=0) \rightarrow \infty \)

and even worse divergences for higher charges

Problem: mismatching ‘cusp’ condition on wavefunctions

These divergences are ‘Fourier’ infinities, and are in no way resolved by infinite size/thermodynamic limit
GGE approach to BEC-LL quench (take 2)

J-SC, unpublished

Idea: if the charges are the problem, use other charges!

Elementary symmetric polynomials of rapidities:

$$\hat{J}_n : \hat{J}_n(\{\lambda\}_N) = J_n(\{\lambda\}_N)$$

$$J_n(\{\lambda\}_N) = \left\{ \begin{array}{ll}
\sum_{1 \leq j_1 < j_2 < \ldots < j_n \leq N} \lambda_{j_1} \lambda_{j_2} \ldots \lambda_{j_n}, & 1 \leq n \leq N \\
0, & n > N.
\end{array} \right.$$
GGE approach to BEC-LL quench (take 2)

J-SC, unpublished

Idea: if the charges are the problem, use other charges!

Elementary symmetric polynomials of rapidities:

\[\hat{J}_n : \quad \hat{J}_n(\{\lambda\}_N) = J_n(\{\lambda\}_N) \]

\[
J_n(\{\lambda\}_N) = \begin{cases}
\sum_{1 \leq j_1 < j_2 < \ldots < j_n \leq N} \lambda_{j_1} \lambda_{j_2} \ldots \lambda_{j_n}, & 1 \leq n \leq N \\
0, & n > N.
\end{cases}
\]

Nice property: bounded on any finite-energy eigenstate

\[
|J_n(\{\lambda\}_N)| \leq \sum_{1 \leq j_1 < j_2 < \ldots < j_n \leq N} |\lambda_{j_1} \lambda_{j_2} \ldots \lambda_{j_n}| \leq \sum_{1 \leq j_1 < j_2 < \ldots < j_{n-1} \leq N} |\lambda_{j_1} \lambda_{j_2} \ldots \lambda_{j_{n-1}}| \times \sum_{j_n=1}^{N} |\lambda_{j_n}| \leq \left(\sum_{j=1}^{N} |\lambda_j| \right)^n \equiv \hat{J}_1^n
\]
GGE approach to BEC-LL quench (take 2)

Seem to work just fine: just evaluate 2nd quantized form

\[\hat{J}_{2n} = (\text{deriv}) + \frac{(-1)^n c^n}{2^{n} n!} \int dy_1...dy_n (\psi^\dagger(y_1))^2... (\psi^\dagger(y_n))^2 \psi^2(y_n)...\psi^2(y_1) \]
GGE approach to BEC-LL quench (take 2)

Seem to work just fine: just evaluate 2nd quantized form

\[\hat{J}_{2n} = \text{deriv} + \frac{(-1)^n c^n}{2^n n!} \int dy_1 \ldots dy_n (\psi(y_1))^2 \ldots (\psi(y_n))^2 \psi^2(y_n) \ldots \psi^2(y_1) \]

on BEC state \[|0_N\rangle \equiv \frac{1}{\sqrt{L^N N!}} \left(\psi_{k=0}^\dagger \right)^N |0\rangle \]

yielding the conditions

\[\langle 0_N | J_{2n} | 0_N \rangle = \frac{(-1)^n c^n}{2^n n! L^n} \frac{N!}{(N - 2n)!} \]
GGE approach to BEC-LL quench (take 2)

Seem to work just fine: just evaluate 2nd quantized form

\[\hat{J}_{2n} = (\text{deriv}) + \frac{(-1)^n c^n}{2^n n!} \int dy_1...dy_n (\psi_1^\dagger(y_1))^2...(\psi_n^\dagger(y_n))^2 \psi^2(y_n)...\psi^2(y_1) \]

on BEC state

\[|0_N\rangle \equiv \frac{1}{\sqrt{L^N N!}} \left(\psi_{k=0}^\dagger \right)^N |0\rangle \]

yielding the conditions

\[\langle 0_N | \hat{J}_{2n} | 0_N \rangle = \frac{(-1)^n c^n N!}{2^n n! L^n (N-2n)!} \]

Careful calculation (need all finite-size effects):
GGE approach to BEC-LL quench (take 2)

Seem to work just fine: just evaluate 2nd quantized form

\[\hat{J}_{2n} = (\text{deriv}) + \frac{(-1)^n e^n}{2^n n!} \int dy_1 \ldots dy_n (\psi(\psi^+)(y_1))^2 \ldots (\psi^+(y_n))^2 \psi^2(y_n) \ldots \psi^2(y_1) \]

on BEC state \[|0_N\rangle \equiv \frac{1}{\sqrt{L^N N!}} \left(\psi^+_{k=0} \right)_N^N |0\rangle \]

yielding the conditions \[\langle 0_N | \hat{J}_{2n} | 0_N \rangle = \frac{(-1)^n e^n}{2^n n!} \frac{N!}{L^n (N - 2n)!} \]

Careful calculation (need all finite-size effects):

Gives back the Q-GGE semicircle law?!?!?!

What is going on???
GGE approach to BEC-LL quench (take 2)

Fundamental problem:
this is not a 'complete' set of charges

Relation between Q's and J's: Girard-Newton formula

$$J_n = \frac{1}{n} \sum_{j=1}^{n} (-1)^{j-1} J_{n-j} Q_j$$

or

$$J_n = \frac{1}{n!}$$

<table>
<thead>
<tr>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>Q_4</th>
<th>Q_5</th>
<th>Q_6</th>
<th>Q_7</th>
<th>Q_8</th>
<th>Q_9</th>
<th>Q_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

...
GGE approach to BEC-LL quench (take 2)

Fundamental problem:
this is not a ‘complete’ set of charges

Relation between Q's and J's: Girard-Newton formula

\[J_n = \frac{1}{n} \sum_{j=1}^{n} (-1)^{j-1} J_{n-j} Q_j \] \hspace{1cm} \text{or} \hspace{1cm} J_n = \frac{1}{n!} \left[\begin{array}{cccccc}
Q_1 & 1 & 0 & 0 & \cdots & 0 \\
Q_2 & Q_1 & 2 & 0 & \cdots & 0 \\
Q_3 & Q_2 & Q_1 & 3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
Q_{n-1} & Q_{n-2} & \cdots & Q_1 & n-1 & 0 \\
Q_n & Q_{n-1} & \cdots & Q_2 & 1 & 0 \\
\end{array} \right]

For example, \[J_4 = \frac{1}{8} Q_2^2 - \frac{1}{4} Q_4 \]
GGE approach to BEC-LL quench (take 2)

Fundamental problem:
this is not a ‘complete’ set of charges

Relation between Q’s and J’s: Girard-Newton formula

\[
J_n = \frac{1}{n} \sum_{j=1}^{n} (-1)^{j-1} J_{n-j} Q_j
\]

or

\[
J_n = \frac{1}{n!} \left[\begin{array}{cccc}
Q_1 & 1 & 0 & 0 & \cdots & 0 \\
Q_2 & Q_1 & 2 & 0 & \cdots & 0 \\
Q_3 & Q_2 & Q_1 & 3 & 0 & \cdots & 0 \\
& & & & & & \\
& & & & Q_{n-1} & Q_{n-2} & \cdots & Q_1 & n-1
\end{array} \right]
\]

For example,

\[
J_4 = \frac{1}{8} Q_2^2 - \frac{1}{4} Q_4
\]

Complete set: free algebra of J’s

Problem: moments of J’s have infinite initial evaulves!

M. Rigol: GGE OK only if widths vanish!
GGE approach to BEC-LL quench (take 3)

Idea: if the model poses problems, change the model

Lattice version:

\[B_j B_j^\dagger - q^{-2} B_j^\dagger B_j = 1, \quad q > 1 \]

\[[N_j, B_j] = -B_j \quad [N_j, B_j^\dagger] = B_j^\dagger \]

\[H_q = -\frac{1}{\delta^2} \sum_{j=1}^{M} (B_j^\dagger B_{j+1} + B_{j+1}^\dagger B_j - 2N_j) \]
GGE approach to BEC-LL quench (take 3)

Idea: if the model poses problems, change the model

Lattice version: \(B_j B_j^\dagger - q^{-2} B_j^\dagger B_j = 1, \quad q > 1 \)

q-bosons

\[[N_j, B_j] = -B_j \quad [N_j, B_j^\dagger] = B_j^\dagger \]

\[H_q = -\frac{1}{\delta^2} \sum_{j=1}^{M} (B_j^\dagger B_{j+1}^\dagger + B_{j+1}^\dagger B_{j} - 2N_j) \]

Continuum limit takes one back to Lieb-Liniger

\(\delta \to 0, \quad M \to \infty, \quad q \to 1 \quad L = M \delta, \quad c = 2\kappa \delta^{-1} \)
Conserved (local) charges built from trace identities:

\[I_m = \delta \sum_{j=1}^{M} J_j^{(m)} \]

\[J^{(1)}(n) = \frac{1}{\delta} \chi^2 B_j^\dagger B_{j+1} \]

\[\chi = \sqrt{1 - q^{-2}} \]
Conserved (local) charges built from trace identities:

\[I_m = \delta \sum_{j=1}^{M} J_{j}^{(m)} \]

\[J^{(1)}(n) = \frac{1}{\delta} \chi^2 B_j^1 B_{j+1} \]

\[\chi = \sqrt{1 - q^{-2}} \]

\[J^{(2)}(n) = \frac{1}{\delta} \chi^2 \left(1 - \frac{\chi^2}{2} \right) \left(B_j B_{j+2} - \frac{\chi^2}{2} B_j^1 B_{j+1} B_{j+1} - \chi^2 B_j^1 B_{j+1} B_{j+2} \right) \]

Truncated GGE with a few charges: very complicated calculation (Kormos, Shashi, Chou) giving approximation

\[\rho_{LL}^{(1)}(\lambda) = \frac{1}{2\pi} \frac{\chi^2}{(\lambda/n)^4 + \gamma(\gamma/4 - 2)(\lambda/n)^2 + \gamma^2} \]
Conserved (local) charges built from trace identities:

\[I_m = \delta \sum_{j=1}^{M} \mathcal{J}_{j}^{(m)} \]

\[\mathcal{J}^{(1)}(n) = \frac{1}{\delta} \chi^2 B_{j} B_{j+1} \quad \chi = \sqrt{1 - q^{-2}} \]

\[\mathcal{J}^{(2)}(n) = \frac{1}{\delta} \chi^2 \left(1 - \frac{\chi^2}{2} \right) \left(B_{j} B_{j+2} - \frac{\chi^2}{2 - \chi^2} B_{j} B_{j+1} B_{j+1} - \chi^2 B_{j+1} B_{j+1} B_{j+2} \right) \]

Truncated GGE with a few charges: very complicated calculation (Kormos, Shashi, Chou) giving approximation

\[\rho_{LL}^{(1)}(\lambda) = \frac{1}{2\pi} \frac{\gamma^2}{(\lambda/n)^4 + \gamma(\gamma/4 - 2)(\lambda/n)^2 + \gamma^2} \]

At large rapidity, \(2\pi \rho(\lambda) = \frac{n^4 \gamma^2}{\lambda^4} - \frac{n^6 \gamma^3 (\gamma - 24)}{4 \lambda^6} + \ldots \)
Conserved (local) charges built from trace identities:

\[I_m = \delta \sum_{j=1}^{M} J_j^{(m)} \]

\[J^{(1)}(n) = \frac{1}{\delta} \chi^2 B_j^1 B_{j+1} \quad \chi = \sqrt{1 - q^-} \]

\[J^{(2)}(n) = \frac{1}{\delta} \chi^2 \left(1 - \frac{\chi^2}{2} \right) \left(B_j^1 B_{j+2} - \frac{\chi^2}{2} B_j^1 B_{j+1} B_{j+1} - \chi^2 B_j^1 B_{j+1} B_{j+1} B_{j+2} \right) \]

Truncated GGE with a few charges: very complicated calculation (Kormos, Shashi, Chou) giving approximation

\[\rho_{LL}^{(1)}(\lambda) = \frac{1}{2\pi} \frac{\gamma^2}{(\lambda/n)^4 + \gamma(\gamma/4 - 2)(\lambda/n)^2 + \gamma^2} \]

At large rapidity, \(2\pi \rho(\lambda) = \frac{n^4 \gamma^2}{\lambda^4} - \frac{n^6 \gamma^3 (\gamma - 24)}{4\lambda^6} + \ldots \)

Recovers the expected tails (giving divergences)
The ‘quench action’ approach

in pictures...

Initial state:
The ‘quench action’ approach

in pictures...

\[\mathcal{H}_0 \quad \text{initial state:} \quad \mathcal{H} \]

in pre-quench Hilbert space basis

in post-quench Hilbert space basis

J-SC & F.H.L. Essler, PRL 2013
The ‘quench action’ approach

J-SC & F.H.L. Essler, PRL 2013

$S_Q[\rho]$
The ‘quench action’ approach

Now in equations...

Consider a generic integrable model, with
eigenstates labeled by quantum numbers \(\{I\} \)
The ‘quench action’ approach

now in equations...

Consider a generic integrable model, with eigenstates labeled by quantum numbers \(\{I\} \)

Resolution of identity: \[1 = \sum_{\{I\}} \langle \{I\} | \{I\} \rangle \]

Arbitrary initial state can be decomposed in this basis:

\[|\Psi(t = 0)\rangle = \sum_{\{I\}} e^{-S^\Psi_{\{I\}}} |\{I\}\rangle \]

using overlap coefficients \[S^\Psi_{\{I\}} = -\ln \langle \{I\} | \Psi(t = 0) \rangle \in \mathbb{C} \]
Time dependence: trivially written as

$$|\Psi(t)\rangle = \sum_{\{I\}} e^{-S^\varphi_{\{I\}t} - i\omega_{\{I\}}t} |\{I\}\rangle$$

The expectation values we're interested in then become

$$\mathcal{O}(t) = \sum_{\{I^\prime\}} \sum_{\{I^\prime\}} e^{-(S^\varphi_{\{I^\prime\}t})^* - S^\varphi_{\{I^\prime\}t} + i(\omega_{\{I^\prime\}} - \omega_{\{I\}})t} \langle\{I^\prime\}|O|\{I\}\rangle \overline{|\{I\}|} e^{-2\Im S^\varphi_{\{I\}}}$$
Start by looking at wavefunction normalization:

\[\langle \Psi(t) | \Psi(t) \rangle = \sum_{\{I\}} e^{-2\Re S_{\{I\}}^\psi} \]

In Th.Lim., would like to use the usual functional integral

\[\lim_{Th} \sum_{\{I\}} (...) = \int D\rho \; e^{S_{\{Y\}\psi}[\rho]} (...) \]
Start by looking at wavefunction normalization:

$$\langle \Psi(t) | \Psi(t) \rangle = \sum_{\{I\}} e^{-2\mathcal{R}_i^\Psi}$$

In Th.Lim., would like to use the usual functional integral

$$\lim_{Th} \sum_{\{I\}} (...) = \int D\rho \ e^{S_{\psi\psi}[\rho]} (...)$$
Start by looking at wavefunction normalization:

\[\langle \Psi(t)|\Psi(t) \rangle = \sum_{\{I\}} e^{-2\mathcal{R}^\Psi_{\{I\}}} \]

In Th.Lim., would like to use the usual functional integral

\[\lim_{Th} \sum_{\{I\}} (...) = \int D\rho \ e^{S_{\{\rho\}}}[\rho](...) \]
Start by looking at wavefunction normalization:

$$\langle \Psi(t) | \Psi(t) \rangle = \sum_{\{I\}} e^{-2iR_{\Psi}^{(I)}}$$

In Th. Lim., would like to use the usual functional integral

$$\lim_{Th} \sum_{\{I\}} (\ldots) = \int D\rho \ e^{S_{\Psi \Psi}[\rho]} (\ldots)$$

Including the effective overlaps yields

$$\lim_{Th} \langle \Psi(t) | \Psi(t) \rangle = \int D\rho \ e^{-S_{\Psi}[\rho]}$$
Start by looking at wavefunction normalization:

$$\langle \Psi(t)|\Psi(t) \rangle = \sum_{\{I\}} e^{-2\Re S_{(t)}^I}$$

In Th.Lim., would like to use the usual functional integral

$$\lim_{Th} \sum_{\{I\}} (...) = \int D\rho \ e^{S_{Y Y}[\rho]} (...)$$

Including the effective overlaps yields

$$\lim_{Th} \langle \Psi(t)|\Psi(t) \rangle = \int D\rho \ e^{-S^Q[\rho]}$$

with ‘quench action’

$$S^Q[\rho] = S^o[\rho] - S^{Y Y}[\rho]$$

Saddle-point evaluation: ρ_{sp} such that

$$\left. \frac{\delta S^Q[\rho]}{\delta \rho} \right|_{\rho_{sp}} = 0$$
For operator expectation values, we had

\[\hat{O}(t) = \sum_{\{I\}} \sum_{\{I'\}} e^{-(S_{\{I\}}^\phi)^* - S_{\{I'\}}^\phi + i(\omega_{\{I\}} - \omega_{\{I'\}})t} \langle \{I\} | O | \{I'\} \rangle \sum_{\{I\}} e^{-2RS_{\{I\}}^\phi} \]

Considering operators which are ‘weak’ (creating a non-entropically large nr of excitations when acting on a given state): thermodyln limit is
For operator expectation values, we had

\[\tilde{O}(t) = \sum_{\{I^t\}} \sum_{\{I^r\}} e^{-(S_y^{(t)} - S_y^{(r)}) + i(\omega^{(t)} - \omega^{(r)}) t} \langle \{I^t\} | O | \{I^r\} \rangle \]

\[\sum_{\{I\}} e^{-2RS_y^{(t)}} \]

Considering operators which are 'weak' (creating a non-entropically large nr of excitations when acting on a given state): thermodynamic limit is

\[\lim_{T \to \infty} \tilde{O}(t) = \frac{\int D\rho e^{-S_Q[\rho]} \lim_{T \to \infty} \sum_{\{\rho\}} e^{-\delta S_{(\rho)}[\rho] - i\omega_{(\rho)}[\rho]} t \langle \rho | O | \rho \rangle \{\rho\} \{\} \rangle}{\int D\rho e^{-S_Q[\rho]}} \]
For operator expectation values, we had

\[\hat{O}(t) = \frac{\sum_{\{I^l\}} \sum_{\{I^r\}} e^{-\left(S_{(I^l)}^0 - S_{(I^r)}^0 + i(\omega_{(I^l)} - \omega_{(I^r)})t\right)} \langle \{I^l\} | O | \{I^r\} \rangle}{\sum_{\{I\}} e^{-2RS_{(I)}^0}} \]

Considering operators which are ‘weak’ (creating a non-entropically large nr of excitations when acting on a given state); thermodynamic limit is

\[\lim_{T \to \infty} \hat{O}(t) = \frac{\int D\rho e^{-S^Q[\rho]} \lim_{T \to \infty} \sum_{\{e\}} e^{-\delta S(e)[\rho] - i\omega(e)[\rho]t} \langle \rho | O | \rho; \{e\} \rangle}{\int D\rho e^{-S^Q[\rho]}} \]

denumerable set of excitations
For operator expectation values, we had

\[\tilde{\mathcal{O}}(t) = \frac{\sum_{\{I\}} \sum_{\{I'\}} e^{-(S^\Phi_{\{I\}})^* - S^\Phi_{\{I'\}}} + i(\omega_{\{I\}} - \omega_{\{I'\}})t} {\sum_{\{I\}} e^{-2RS^\Phi_{\{I\}}}} \langle \{I\}\{I'\}\rangle \langle O | O \rangle \]

Considering operators which are ‘weak’ (creating a non-entropically large nr of excitations when acting on a given state): thermodynamic limit is

\[
\lim_{T \to 0} \tilde{\mathcal{O}}(t) = \frac{\int \mathcal{D}p e^{-S^\Phi[p]} \lim_{T \to 0} \sum_\{\{e\}\} e^{-\delta S_{\{e\}}[p] - i\omega_{\{e\}}[p]t} \langle O | O(p; \{e\}) \rangle} {\int \mathcal{D}p e^{-S^\Phi[p]}}
\]

relative overlaps
denumerable set of excitations
For operators with non-entropically large matrix elements, can perform a saddle-point evaluation (same saddle-point in numerator and denominator)

\[
\lim_{T \to 0} \bar{O}(t) = \lim_{T \to 0} \frac{1}{2} \sum_{\{e\}} \left[e^{\frac{i}{\hbar} \delta S_{\{e\}}[\rho_{sp}]} \left(\frac{\rho_{sp}}{\rho_{sp}} \right)^t \left(\rho_{sp} \right) \left(\rho_{sp} \right)^t \right]
\]

\[
+ e^{\frac{i}{\hbar} \delta S_{\{e\}}[\rho_{sp}]} \left(\frac{\rho_{sp}}{\rho_{sp}} \right)^t \left(\rho_{sp} \right) \left(\rho_{sp} \right)^t \]
\]
For operators with non-entropically large matrix elements, can perform a saddle-point evaluation (same saddle-point in numerator and denominator)

\[
\lim_{T \to 0} \bar{O}(t) = \lim_{T \to 0} \frac{1}{2} \sum_{\{e\}} \left[e^{-\delta S_{\{e\}}[\rho_{sp}]} \left(\rho_{sp}|O|\rho_{sp}; \{e\} \right) + e^{-\delta S_{\{e\}}[\rho_{sp}]} \left(\rho_{sp}|O|\rho_{sp} \right) \right]
\]
For operators with non-entropically large matrix elements, can perform a saddle-point evaluation (same saddle-point in numerator and denominator)

\[
\lim_{T \to 0} \bar{O}(t) = \lim_{T \to 0} \frac{1}{2} \sum_{\{e\}} \left[e^{-\delta S_{\{e\}}[\rho; \pi]} e^{-i \omega_{\{e\}}[\rho; \pi]} t \langle \rho; \pi | O | \rho; \pi \rangle \{ e \} \right]
\]

Main message: the *full* time dependence is recoverable using a minimal amount of data
For operators with non-entropically large matrix elements, can perform a saddle-point evaluation (same saddle-point in numerator and denominator)

\[
\lim_{T \to 0} \bar{O}(t) = \lim_{T \to 0} \frac{1}{2} \sum_{\{\sigma\}} \left[e^{-\delta S_{\{\sigma\}}[\rho_{sp}]}e^{-i\omega_{\{\sigma\}}[\rho_{sp}]t} \langle \rho_{sp} | \mathcal{O} | \rho_{sp} \rangle \{ \sigma \} \right]
\]

Main message: the *full* time dependence is recoverable using a minimal amount of data
- saddle-point distribution (from GTBA)
- excitations in vicinity of sp state (easy)
For operators with non-entropically large matrix elements, can perform a saddle-point evaluation (same saddle-point in numerator and denominator)

\[
\lim_{T \to 0} \bar{\mathcal{O}}(t) = \lim_{T \to 0} \frac{1}{2} \sum_{\{e\}} \left[e^{-\delta S_{\{e\}}[\rho_{sp}] - i \omega_{\{e\}}[\rho_{sp}]} t \langle \rho_{sp} | \mathcal{O} | \rho_{sp} \rangle \right]
\]

Main message: the *full* time dependence is recoverable using a minimal amount of data

- saddle-point distribution (from GTBA)
- excitations in vicinity of sp state (easy)
- differential overlaps
For operators with non-entropically large matrix elements, can perform a saddle-point evaluation (same saddle-point in numerator and denominator)

\[
\lim_{T \to 0} \tilde{O}(t) = \lim_{T \to 0} \frac{1}{2} \sum_{\{e\}} \left[e^{-\delta S_{\{e\}}}[\rho_{s_p} - i \omega_{\{e\}}][\rho_{s_p}] t \langle \rho_{s_p} | O | \rho_{s_p}; \{e\} \rangle \\
+ e^{-\delta S_{\{e\}}}[\rho_{s_p} + i \omega_{\{e\}}][\rho_{s_p}] t \langle \rho_{s_p}; \{e\} | O | \rho_{s_p} \rangle \right]
\]

Main message: the *full* time dependence is recoverable using a minimal amount of data

- saddle-point distribution (from GTBA)
- excitations in vicinity of sp state (easy)
- differential overlaps
- selected matrix elements
For operators with non-entropically large matrix elements, can perform a saddle-point evaluation (same saddle-point in numerator and denominator)

\[
\lim_{T \to \infty} \bar{\mathcal{O}}(t) = \lim_{T \to \infty} \frac{1}{2} \sum_{\{e\}} \left[e^{-\delta S_{\{e\}}(\rho_{ap}) - i\omega_{\{e\}}(\rho_{ap})} \langle \rho_{ap} | \mathcal{O} | \rho_{ap} ; \{e\} \rangle + e^{-\delta S_{\{e\}}(\rho_{ap}) + i\omega_{\{e\}}(\rho_{ap})} \langle \rho_{ap} ; \{e\} | \mathcal{O} | \rho_{ap} \rangle \right]
\]

Main message: the *full* time dependence is recoverable using a minimal amount of data

- saddle-point distribution (from GTBA)
- excitations in vicinity of sp state (easy)
- differential overlaps
- selected matrix elements
For operators with non-entropically large matrix elements, can perform a saddle-point evaluation (same saddle-point in numerator and denominator)

\[
\lim_{T_h} \tilde{O}(t) = \lim_{T_h} \frac{1}{2} \sum_{\{e\}} \left[e^{-\delta S(e)} |\rho_{sp}\rangle - i\omega(e) |\rho_{sp}\rangle t \langle \rho_{sp}| \mathcal{O} |\rho_{sp}\rangle \{e\} \right] \\
+ e^{-\delta S(e)} |\rho_{sp}\rangle + i\omega(e) |\rho_{sp}\rangle t \langle \rho_{sp}| \{e\} \mathcal{O} |\rho_{sp}\rangle
\]

Main message: the *full* time dependence is recoverable using a minimal amount of data

Large time limit: \[
\lim_{t\to\infty} \lim_{T_h} \tilde{O}(t) = \lim_{T_h} \langle \rho_{sp}| \mathcal{O} |\rho_{sp}\rangle
\]
Back to BEC-LL quench

Problem: need to calculate overlaps.

Remark: only parity-invariant states contribute since

\[0 = \langle 0 | \hat{Q}_{2m+1} | I \rangle = \langle 0 | I \rangle \sum_{j=1}^{N} \lambda_j^{2m+1} \]
Back to BEC-LL quench

Problem: need to calculate overlaps.

Remark: only parity-invariant states contribute since

\[0 = \langle 0 | \hat{Q}_{2m+1} | I \rangle = \langle 0 | I \rangle \sum_{j=1}^{N} \lambda_j^{2m+1} \]

Known large \(c \) limit:

Gritsev, Rostunov & Demler, JSTAT 2010

\[\langle \{ \lambda_j \}_{j=1}^{N/2}, \{-\lambda_j\}_{j=1}^{N/2} | 0 \rangle \propto \prod_{\lambda_j > 0} \frac{1}{\lambda_j} \]
Back to BEC-LL quench

Problem: need to calculate overlaps.

Remark: only parity-invariant states contribute since

\[0 = \langle 0 | \hat{Q}_{2m+1} | I \rangle = \langle 0 | I \rangle \sum_{j=1}^{N} \lambda_j^{2m+1} \]

Known large \(c \) limit: Gritsev, Rostunov & Demler, JSTAT 2010

\[\langle \{ \lambda_j \}_{j=1}^{N/2}, \{ -\lambda_j \}_{j=1}^{N/2} | 0 \rangle \propto \prod_{\lambda_j > 0} \frac{1}{\lambda_j} \]
Back to BEC-LL quench

M. Brockmann JPA 2014

\[
\langle \{\lambda_j\}_{j=1}^{N/2}, \{-\lambda_j\}_{j=1}^{N/2}\rangle = \sqrt{\frac{(cL)^{-N} N!}{\det_{j,k=1}^N G_{jk}}} \frac{\det_{j,k=1}^{N/2} G_{jk}^Q}{\prod_{j=1}^{N/2} \frac{\lambda_j}{c} \sqrt{\frac{\lambda_j^2}{c^2} + \frac{1}{4}}}
\]

(reminiscent of Gaudin formula)

with matrix
\[
G_{jk}^Q = \delta_{jk} \left(L + \sum_{l=1}^{N/2} K^Q(l_j, l_l) \right) - K^Q(l_j, l_k)
\]

\[
K^Q(\lambda, \mu) = K(\lambda - \mu) + K(\lambda + \mu)
\]

\[
K(\lambda) = \frac{2c}{\lambda^2 + c^2}
\]
Quench action solution to BEC-LL quench

It is in fact possible to give a closed form solution of the GTBA for the saddle-point state, for any value of the interaction:
Quench action solution to BEC-LL quench

It is in fact possible to give a closed form solution of the GTBA for the saddle-point state, for any value of the interaction:

\[
\rho(\lambda) = -\frac{\gamma}{2\pi} \frac{\partial a(\lambda)}{\partial \gamma} (1 + a(\lambda))^{-1}
\]

\[
a(\lambda) = \frac{2\pi/\gamma}{\Lambda_c \sinh \left(\frac{2\pi \Lambda_c}{c} \right)} I_{1-2i\Lambda_c/c} \left(\frac{4}{\sqrt{\gamma}} \right) I_{1+2i\Lambda_c/c} \left(\frac{4}{\sqrt{\gamma}} \right)
\]
Quench action solution to BEC-LL quench

Quench action solution to BEC-LL quench

Subplot: scaled fn

\[\rho_s(x) = \sqrt{\gamma} \rho(c\sqrt{\gamma}/2) \]

Large c:

\[\rho(\lambda) = \frac{1}{2\pi} \frac{4n^2}{\lambda^2 + 4n^2} \]

Small c: semicircle

\[\rho(\lambda) \sim \frac{1}{\pi \sqrt{\gamma}} \sqrt{1 - \frac{\lambda^2}{4\gamma n^2}} \]

Asymptotics as from q-bosons:

\[2\pi \rho(\lambda) \sim \frac{n^4 \gamma^2}{\lambda^4} + \frac{n^6 \gamma^3 (24 - \gamma)}{4\lambda^6} + \ldots \]
Quench action solution to BEC-LL quench

Subplot: scaled fn
\[\rho_s(x) = \sqrt{\gamma} \rho(c \sqrt{\gamma} x/2)/2 \]

Large c:
\[\rho(\lambda) = \frac{1}{2\pi} \frac{4n^2}{\lambda^2 + 4n^2} \]

Small c: semicircle
\[\rho(\lambda) \sim \frac{1}{\pi \sqrt{\gamma}} \sqrt{1 - \frac{\lambda^2}{4\gamma n^2}} \]

Asymptotics as from q-bosons:
\[2\pi \rho(\lambda) \sim \frac{n^4 \gamma^2}{\lambda^4} + \frac{n^6 \gamma^3 (24 - \gamma)}{4\lambda^6} + \ldots \]

Tail explains divergences of evals of conserved charges
Quench action solution to BEC-LL quench

Subplot: scaled fn

$\rho_s(x) = \sqrt{\gamma} \rho(c\sqrt{\gamma}x/2)/2$

Large c:

$\rho(\lambda) = \frac{1}{2\pi} \frac{4n^2}{\lambda^2 + 4n^2}$

Small c: semicircle

$\rho(\lambda) \sim \frac{1}{\pi\sqrt{\gamma}} \sqrt{1 - \frac{\lambda^2}{4\gamma n^2}}$

Asymptotics as from q-bosons: $2\pi \rho(\lambda) \sim \frac{n^4 \gamma^2}{\lambda^4} + \frac{n^6 \gamma^3 (24 - \gamma)}{4\lambda^6} + \ldots$

Tail explains divergences of evalus of conserved charges
Relaxation & equilibration

Time evolution driven by ‘excitations’ around saddle-point of quench action.

In the impenetrable limit, reproduces known result

Kormos, Collura & Calabrese, PRA 89, 2014

\[
\langle \hat{\rho}(x)\hat{\rho}(0) \rangle_t - \langle \hat{\rho}(x)\hat{\rho}(0) \rangle_{sp} = \left[\int_{-\infty}^{\infty} \frac{dk}{\pi} \frac{nk}{4n^2 + k^2} e^{-2itk^2 + ikx} \right]^2
\]

where

\[
\langle \rho_{sp} | \hat{\rho}(x)\hat{\rho}(0) | \rho_{sp} \rangle = n\delta(x) + n^2(1 - e^{-4n|x|})
\]

Relaxation at finite c: ongoing work...
Thinking back on the (Q or J)-GGE

The solution of the BEC-LL quench is very instructive:

For Lieb-Liniger, we had charges $Q_n(\{\lambda\}_N) = \sum_{j=1}^{N} \lambda_j^n$

The GGE ‘free energy’ is

$$\sum_n \beta_n \hat{Q}_n = \sum_n \beta_n \sum_j \lambda_j^n = \sum_n \beta_n \int d\lambda \rho_{Q\text{-GGE}}(\lambda) \lambda^n$$

From the exact overlaps, the quench action is however

$$S^Q[\rho] = \frac{L}{2} \int_0^\infty d\lambda \rho(\lambda) \log \left[\frac{\lambda^2}{c^2} \left(\frac{\lambda^2}{c^2} + \frac{1}{4} \right) \right] - S^{YY}[\rho]$$
Néel to XXZ quench
Quench from Néel to XXZ

Start from Néel state:
Quench from Néel to XXZ

Start from Néel state:

From $t=0$ onwards, evolve with XXZ Hamiltonian
Quench from Néel to XXZ

Start from Néel state:

From \(t=0 \) onwards, evolve with XXZ Hamiltonian

Positions of downturned spins start fluctuating wildly

Can one treat this problem exactly?
“Particle content” of XXZ: nontrivial

Solution of Bethe equations: rapidities + strings

\[\lambda^{j,a}_\alpha = \lambda^{j}_\alpha + \frac{\zeta}{2} (n_j + 1 - 2a) + i\delta^{j,a}_\alpha \quad O(e^{-(cst)N}) \]
Quench action approach to Néel-XXZ quench
First step: exact overlaps of Néel state with XXZ eigenstates

(Gaudin-like form again!) M. Brockmann, J. De Nardis, B. Wouters & J-SC JPA 2014

\[
\frac{(\Psi_0|\{\pm \lambda_j\}_{j=1}^{M/2})}{\|\{\pm \lambda_j\}_{j=1}^{M/2}\|} = \sqrt{2} \left[\prod_{j=1}^{M/2} \frac{\sqrt{\tan(\lambda_j + i\eta/2) \tan(\lambda_j - i\eta/2)}}{2 \sin(2\lambda_j)} \right] \frac{\det_{M/2}(G_{jk}^+)}{\det_{M/2}(G_{jk}^-)}
\]

\[
G_{jk}^\pm = \delta_{jk} \left(NK_{\eta/2}(\lambda_j) - \sum_{l=1}^{M/2} K_{\eta}^+(\lambda_j, \lambda_l) \right) + K_{\eta}^\pm(\lambda_j, \lambda_k)
\]

\[
K_{\eta}^\pm(\lambda, \mu) = K_{\eta}(\lambda - \mu) \pm K_{\eta}(\lambda + \mu)
\]

\[
K_{\eta}(\lambda) = \frac{\sinh(2\eta)}{\sin(\lambda + i\eta) \sin(\lambda - i\eta)}
\]
Quench action approach to Néel-XXZ quench

Second step: generalized TBA

\[
\ln \eta_n(\lambda) = -2h_n - \ln W_n(\lambda) + \sum_{m=1}^{\infty} a_{nm} \ast \ln \left(1 + \eta_m^{-1}\right)(\lambda)
\]

where \(\eta_n(\lambda) \equiv \rho_{n,h}(\lambda)/\rho_n(\lambda)\)

\[a_n(\lambda) = \frac{\sin n\eta}{\pi \cosh n\eta - \cos 2\lambda}\]

and the effective driving terms (pseudo-energies) are

\[
W_n(\lambda) = \begin{cases}
\prod_{j=1}^{n-1} \frac{\cosh (2j-1)\eta - \cos 2\lambda}{\cosh (2j-1)\eta + \cos 2\lambda} & \text{if } n \text{ odd,} \\
\prod_{j=1}^{n-1} \frac{\cosh 2j\eta + \cos 2\lambda}{\cosh 2j\eta - \cos 2\lambda} & \text{if } n \text{ even.}
\end{cases}
\]
Quench action approach to Néel-XXZ quench

Equivalent form of generalized TBA:

\[
\ln(\eta_n) = d_n + s \star \left[\ln(1 + \eta_{n-1}) + \ln(1 + \eta_{n+1}) \right]
\]

with driving terms

\[
d_n(\lambda) = \sum_{k \in \mathbb{Z}} e^{-2ik\lambda} \frac{\tanh(\eta k)}{k} (-1)^n - (-1)^k
\]
Quench action approach to Néel-XXZ quench

Equivalent form of generalized TBA:

\[\ln(\eta_n) = d_n + s * \left[\ln(1 + \eta_{n-1}) + \ln(1 + \eta_{n+1}) \right] \]

with driving terms

\[d_n(\lambda) = \sum_{k \in \mathbb{Z}} e^{-2ik\lambda} \frac{\tanh(\eta k)}{k} \left((-1)^{n} - (-1)^{k} \right) \]

GGE with local charges: same form of coupled equations, but driving term only for n=1:

\[d_1(\lambda) = -\frac{1}{\pi} \sum_{m=1}^{\infty} \beta_{2m} \sum_{k \in \mathbb{Z}} e^{-2ik\lambda} \frac{k^{2m-2}}{\cosh k\eta} \]
Néel-XXZ quench: conserved charges

Initial expectation value of local charges:

\[\lim_{N \to \infty} \frac{1}{N} \langle \text{Néel} | Q_{n+1} | \text{Néel} \rangle = -\frac{\Delta}{2} \frac{\partial^{n-1}}{\partial x^{n-1}} \frac{1 - \Delta^2}{\cosh[\sqrt{1 - \Delta^2 x}] - \Delta^2} \bigg|_{x=0} \]

In 1-to-1 correspondence with 1-string hole density:

\[\sum_{k \in \mathbb{Z}} k^{2m-2} \left(\frac{e^{-|k|\eta} - \tilde{\rho}^t_{1}(k)}{2 \cosh k\eta} \right) = \langle Q_{2m} \rangle \quad m \in \mathbb{N} \]
Néel-XXZ quench: conserved charges

Initial expectation value of local charges:

\[\lim_{N \to \infty} \frac{1}{N} \langle \text{Néel} | Q_{n+1} | \text{Néel} \rangle = \frac{\Delta}{2} \left. \frac{\partial^{n-1}}{\partial x^{n-1}} \frac{1 - \Delta^2}{\cosh[\sqrt{1 - \Delta^2} x] - \Delta^2} \right|_{x=0} \]

In 1-to-1 correspondence with 1-string hole density:

\[\sum_{k \in \mathbb{Z}} k^{2m-2} \left(\frac{e^{-|k|\eta} - \tilde{\rho}_1^h(k)}{2 \cosh k\eta} \right) = \langle Q_2^m \rangle \quad m \in \mathbb{N} \]

which fixes

\[\tilde{\rho}_1^N = \frac{\pi^2 a_1^3(\lambda) \sin^2(2\lambda)}{\pi^2 a_1^5(\lambda) \sin^2(2\lambda) + \cosh^2(\eta)} \]

Quench action nontrivially reproduces this; GGE also of course, but only by definition
The steady state: Néel to XXZ

Solid lines: quench action
Dashed lines: GGE (local charge)
The steady state: Néel to XXZ

Solid lines: quench action
Dashed lines: GGE (local charge)
The steady state: Néel to XXZ

Solid lines: quench action
Dashed lines: GGE (local charge)
QA and GGE have different saddle-point densities

Large Delta expansion:
\[\rho_1^{GGE} - \rho_1^{sp} = \frac{1}{4\pi\Delta^2} + O(\Delta^{-3}), \]
\[\rho_2^{GGE} - \rho_2^{sp} = \frac{1 - 3\sin^2(\Delta)}{3\pi\Delta^2} + O(\Delta^{-3}). \]
The steady state: Néel to XXX
Difference in distribution: impact on correlations
Difference in distribution:
impact on correlations

Large Delta expansions:

\[
\langle \sigma_1^x \sigma_2^x \rangle_{QA} = -1 + \frac{2}{\Delta^2} - \frac{7}{2 \Delta^4} + \frac{77}{16 \Delta^6} + \ldots
\]

\[
\langle \sigma_1^x \sigma_2^x \rangle_{GGE} = -1 + \frac{2}{\Delta^2} - \frac{7}{2 \Delta^4} + \frac{43}{8 \Delta^6} + \ldots
\]
Not convinced?

Look at other results by Budapest group

B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, G. Takács, arxiv 1405.2843

- reobtain our Néel results
- also consider initial dimer state
- obtain numerical (iTEBD) evidence for correlations being different in dimer case
Not convinced?

Look at other results by Budapest group
B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd, G. Takács, arxiv 1405.2843

- reobtain our Néel results
- also consider initial dimer state
- obtain numerical (iTEBD) evidence for correlations being different in dimer case

There remains little doubt about the correctness of the quench action results
What's going on?

Néel to XXZ: current situation

- quench action solution gives correct expectation value for all conserved charges, directly from microscopics
- quench action and (local) GGE steady state distributions do not coincide
- these different distributions lead to different observable expectation values

Possible explanations of this mismatch:
What’s going on?

Néel to XXZ: current situation
- quench action solution gives correct expectation value for all conserved charges, directly from microscopics
- quench action and (local) GGE steady state distributions do not coincide
- these different distributions lead to different observable expectation values

Possible explanations of this mismatch:
- GGE converges to QA once all (nonlocal) charges are added
- exceptional states invalidate the QA calculation ruled out
- of which there are exponentially many more than local ones!
What’s going on?

Néel to XXZ: current situation
- quench action solution gives correct expectation value for all conserved charges, directly from microscopics
- quench action and (local) GGE steady state distributions do not coincide
- these different distributions lead to different observable expectation values

Possible explanations of this mismatch:
- GGE converges to QA once all (nonlocal) charges are added
- exceptional states invalidate the QA calculation ruled out
- of which there are exponentially many more than local ones!