Title: Universal dynamics and topological order in many-body localized states

Date: May 15, 2014 10:30 AM

URL: http://pirsa.org/14050082

Abstract: It has been argued recently that, through a phenomenon of many-body localization, closed quantum systems subject to sufficiently strong disorder would fail to thermalize. In this talk I will describe a real time renormalization group approach, which offers a controlled description of universal dynamics in the localized phase. In particular it explains the ultra-slow entanglement propagation in this state and identifies the emergent conserved quantities which prevent thermalization. The RG analysis also shows, that far from being a trivial dead state, the MBL state admits phase transitions between distinct dynamical phases. For example, I will discuss the universal aspects of a transition between a paramagnetic localized state to one which exhibits spin-glass order. Finally, I will present a development of the RG scheme, defined on an effective coarse grained model, which allows to capture the transition from a many-body localized to a thermalizing state.
What are dynamical phase transitions? Do they exist?

Random transverse field Ising model + generic interactions:

\[H = \sum_i [J_i^z \sigma_i^z \sigma_{i+1}^z + h_i \sigma_i^x + J_i^x \sigma_i^x \sigma_{i+1}^x + \ldots] \]

Distinct quantum phases and universal critical behavior in ground state
(Infinite randomness fixed point separating Paramagnet and Ferromagnet)

Contrast this to:

Unitary evolution from an arbitrary initial state:

\[e^{-iHt \mid \Psi_0 \rangle} \]

\[\downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \uparrow \]

Involves all energies!

- Is there universality associated with the long time behavior?
- Transitions between different dynamical states with singular effect on the behavior of observables?
What are dynamical phase transitions? do they exist?

Random transverse field Ising model + generic interactions:

\[H = \sum_i \left[J_i^x \sigma_i^x \sigma_{i+1}^x + h \sigma_i^z + J_i^z \sigma_i^z \sigma_{i+1}^z + \ldots \right] \]

Distinct quantum phases and universal critical behavior in ground state
(Infinite randomness fixed point separating Paramagnet and Ferromagnet)

Contrast this to:
Unitary evolution from an arbitrary initial state: \(e^{-iHt} | \Psi_0 \rangle \)

\[\uparrow \downarrow \]

Involves all energies!
- Is there universality associated with the long time behavior?
- Transitions between different dynamical states with singular effect on the behavior of observables?
What are dynamical phase transitions? Do they exist?

\[H = \sum_i \left[J_i^x \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z + J_i^x \sigma_i^x \sigma_{i+1}^x + \ldots \right] e^{-iHt} |\Psi_0\rangle \]

Naïve answer: NO!
- System thermalizes at long times.
- Any singularities are just thermal phase transitions.
- No singularities in 1d

I will argue: YES!
- Thermalization prevented by strong disorder (Many body localization)
- Allows for distinct quantum dynamical phases and phase transitions
- Universal singularities in dynamics possible in 1d at finite energy density
Eigenstate thermalization hypothesis (ETH)

Deutsch 91, Srednicki 94

In a high energy eigenstate:

$$\rho_A = \frac{1}{Z_A} e^{-\beta H_A}$$

Extensive Von-Neuman entropy:

$$S_A \propto L^d$$
Outline

- ETH and MBL – brief intro

- RG theory for MBL states
 Dynamical quantum phase transition between MBL states

- RG theory for the MBL transition
 Surprising insight on the delocalization transition and the delocalized state
Outline

- ETH and MBL – brief intro

- RG theory for MBL states
 Dynamical quantum phase transition between MBL states

- RG theory for the MBL transition
 Surprising insight on the delocalization transition and the delocalized state
Eigenstate thermalization hypothesis (ETH)

Deutsch 91, Srednicki 94

In a high energy eigenstate:

$\rho_A = \frac{1}{Z_A} e^{-\beta H_A}$

Extensive Von-Neuman entropy:

$S_A \propto L^d$

Example where ETH fails:
Anderson localization

“Area law” entropy as in ground state also holds in high energy eigenstates

$S_A \propto L^{d-1}$
Thermalization Following a Quench

\[\rho(0) = \rho_A \otimes \rho_B \]

\[\rho(t_1) \]

\[\rho(t_2) \]

Growing entanglement between the two halves is measured by the Von-Neuman entropy:

\[S_A(t) = -\text{Tr}[\rho_A(t)\ln \rho_A(t)] \]

Ergodic system

\[S_A = S_{\text{equilibrium}} \sim L \]

Localized system (?)

\[S_A \sim \xi_{\text{localization}} \]
Generic exception to ETH: Many body localization

Anderson localization of non interacting particles:

Many body localization
(Basko et. al. 2006, Gomyi et. al. 2005)

\[
\text{Disorder strength} \quad \begin{cases}
\text{Localized} \\
\text{Delocalized} \\
\text{Thermalizing}
\end{cases}
\]

\[
\begin{pmatrix}
\chi = 0 \\
\sigma = 0
\end{pmatrix}
\]

\[
\text{Non thermalizing}
\]
Dynamical Transitions between distinct localized states

RV and Altman, PRL (2013); RV and Altman, arXiv:1307.3256

Example: random transverse field Ising model (\mathbb{Z}_2 symmetry)

\[H = \sum_i [J_i^x \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z + J_i^z \sigma_i^z \sigma_{i+1}^z + \ldots] \]

"interaction"

Unitary evolution from a generic un-entangled initial state:

\[e^{-iHt} | \Psi_0 \rangle \]

We study
1. Decay of local moments $\langle \sigma_i^z(t) \rangle$
2. Evolution of entanglement entropy

\[S_A(t) = -Tr[\rho_A(t) \ln \rho_A(t)] \]
RG scheme for time evolution

\[H = \sum \left(J_i^z \sigma^z_i \sigma^z_{i+1} + h_i \sigma^x_i + J_i^x \sigma^x_i \sigma^x_{i+1} + \ldots \right) \]

1. Select the fast degrees of freedom and solve for their evolution
2. Treat the slow degrees of freedom using time dependent perturbation theory
3. Average over the fast time-scale and obtain effective Hamiltonian for the slow degrees of freedom

Large field:

\[J_L \quad J_R \]

\[h_i = \Omega \]

\[J_L J_R / \Omega \]
RG scheme for time evolution

\[H = \sum_i \left[J_i^z \sigma_i^z \sigma_{i+1}^z + h_i \sigma_i^z + J_i^x \sigma_i^x \sigma_{i+1}^x + \ldots \right] \]

1. Select the fast degrees of freedom and solve for their evolution
2. Treat the slow degrees of freedom using time dependent perturbation theory
3. Average over the fast time-scale and obtain effective Hamiltonian for the slow degrees of freedom

Large field:

\[J_L, J_R \]

\[h_i = \Omega \]

\[\rightarrow \]

\[J_L J_R / \Omega \]
RG scheme for *time* evolution

\[H = \sum_i \left[J^z_i \sigma_i^z \sigma_{i+1}^z + h_i \sigma_i^x + J^x_i \sigma_i^x \sigma_{i+1}^x + \ldots \right] \]

1. Select the fast degrees of freedom and solve for their evolution
2. Treat the slow degrees of freedom using time dependent perturbation theory
3. Average over the fast time-scale and obtain effective Hamiltonian for the slow degrees of freedom

Large field:

\[J_L \uparrow \uparrow J_R \downarrow \downarrow \quad \Rightarrow \quad \downarrow \downarrow \]

\[h_i = \Omega \]

Large bond:

\[J_L \uparrow \Omega \downarrow J_R \downarrow \quad \Rightarrow \quad J_L \uparrow \uparrow J_R \downarrow \downarrow \]

\[h_L h_R / \Omega \]
Results from the RG Flow

\[H = \sum_i \left[J_i^x \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z + J_i^z \sigma_i^z \sigma_{i+1}^z + \ldots \right] e^{-iHt} | \Psi_0 \rangle \]

Qualitative possible dynamical phases:

\[J^z > h \]

“Glass”
Results from the RG Flow

\[H = \sum_1 \left[J^z_i \sigma^z_i \sigma^z_{i+1} + h_i \sigma^z_i + J^x_i \sigma^x_i \sigma^x_{i+1} + \ldots \right] e^{-iHt} | \Psi_0 \rangle \]

Qualitative possible dynamical phases:

- \(J^z > h \) "Glass"
- \(h > J^z \) "Paramagnet"
Results from the RG Flow

\[H = \sum_i \left[J_i^z \sigma_i^z \sigma_{i+1}^z + h_i \sigma_i^z + J_i^x \sigma_i^x \sigma_{i+1}^x + \ldots \right] e^{-iHt} | \Psi_0 \rangle \]

Qualitative possible dynamical phases:

- \(J^z > h \) "Glass"
- \(h > J^z \) "Paramagnet"

\[\langle \ln \left(\frac{1}{n^z} \right) \rangle \]

\[\langle \ln \left(\frac{1}{J^{\tau \tau}} \right) \rangle \]

\(\hbar_{\text{typ}} \to \text{const} \)
\(J^z_{\text{typ}} \to 0 \)
\(2\Delta \)
Results from the RG Flow

\[H = \sum \left[J_i^x \sigma_i^x \sigma_{i+1}^x + h_i \sigma_i^z + J_i^z \sigma_i^z \sigma_{i+1}^z + \ldots \right] e^{-iHt} | \Psi_0 \rangle \]

Qualitative possible dynamical phases:

- \(J^z > h \) “Glass”
- \(h > J^z \) “Paramagnet”

At criticality:
Infinite randomness scaling

\[
\langle \ln \left(\frac{1}{\mathcal{R}} \right) \rangle^2 \quad \text{or} \quad \langle \ln \left(\frac{1}{\mathcal{R}} \right) \rangle^2
\]

“Paramagnet”

\[
\begin{align*}
\hat{h}_{\text{typ}} &\rightarrow \text{const} \\
\hat{J}_\text{typ}^z &\rightarrow 0 \\
\hat{J}_\text{typ}^x &\rightarrow \text{const} \\
\hat{h}_{\text{typ}} &\rightarrow 0
\end{align*}
\]
Results from the RG Flow

\[H = \sum [J_i^z \sigma_i^z \sigma_{i+1}^z + h_i \sigma_i^z + J_i^x \sigma_i^x \sigma_{i+1}^x + \ldots] e^{-iHt} | \Psi_0 \rangle \]

Qualitative possible dynamical phases:

- \(J^z > h \): "Glass"
- \(h > J^z \): "Paramagnet"

\[\langle \ln \left(\frac{1}{\ln} \right) \rangle^z \rightarrow 2\Delta \]

At criticality:
- Infinite randomness scaling
- Interactions irrelevant at the critical point:
 \[J_{typ}^x \sim J_0^x e^{-\Gamma} \]
 \[(\phi = \text{golden ratio}) \]

\[\ln \left(\frac{1}{J_{typ}} \right) \sim \Gamma \equiv \log (\Omega_0 t) \]

\[J_{typ}^z \rightarrow \text{const} \quad h_{typ} \rightarrow 0 \]
Result from the RG flow: spin decay

Critical point:
\[\langle \sigma_i^z(t) \rangle \sim \frac{1}{\ln^{\phi} t} \]
\[\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618 \]
(golden ratio)

Saturation of local spin expectation. Glass order parameter!

\(\sigma_i^z \) has an overlap with an integral of motion in the glass
It breaks the \(Z_2 \) symmetry!
Result from the RG flow: spin decay

Critical point:

\[\langle \sigma_i^z(r) \rangle \sim \frac{1}{\ln^{1-\phi} r} \]

\[\phi = (1 + \sqrt{5})/2 \approx 1.618 \]

(golden ratio)

“Paramagnet”

\[\langle \sigma_i^z(r) \rangle \sim \frac{\ln r}{r^\alpha} \]

Saturation of local spin expectation. Glass order parameter!

\(\sigma_i^z \) has an overlap with an integral of motion in the glass
It breaks the \(Z_2 \) symmetry!

“glass”:

\[\langle \sigma_i^z(r) \rangle \sim \text{const} \sim \Delta^{1-\phi} \]
RG result: Entanglement entropy growth

Interaction is an irrelevant perturbation but has a dramatic effect on entanglement entropy growth.

<table>
<thead>
<tr>
<th></th>
<th>Glass/Paramagnet</th>
<th>critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(t)$</td>
<td>$\sim \ln t \Theta(t - t_{int})$</td>
<td>$\sim [\ln t]^\beta \Theta(t - t_{int})$</td>
</tr>
<tr>
<td>Saturation in sys. of size L</td>
<td>$\sim s L$</td>
<td>$\sim s L$</td>
</tr>
</tbody>
</table>

$S_{\infty}(L)$
RG result: Entanglement entropy growth

Interaction is an irrelevant perturbation but has a dramatic effect on entanglement entropy growth.

<table>
<thead>
<tr>
<th></th>
<th>Glass/Paramagnet</th>
<th>critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(t)$</td>
<td>$\sim \ln t , \Theta(t - t_{\text{int}})$</td>
<td>$\sim [\ln t]^\frac{3}{5} , \Theta(t - t_{\text{int}})$</td>
</tr>
<tr>
<td>Saturation in sys. of size L</td>
<td>$\sim s , L$</td>
<td>$\sim s , L$</td>
</tr>
</tbody>
</table>

- Universal log growth (Serbyn et. al., Oganesyan et. al., Bauer et al.)
- Enhanced evolution at the critical point (same as in random XXZ)
- Saturates to extensive value but less than thermal in finite system
- Absence of thermalization because of emergent conserved quantities
Delocalization due to distant resonances

Resonances between decimated sites can generate a slow mode that violates the integrals of motion

If $J_{\text{eff}} > \delta \Omega$

Are these resonances relevant near the random fixed points we found?
RG result: Entanglement entropy growth

Interaction is an irrelevant perturbation but has a dramatic effect on entanglement entropy growth.

<table>
<thead>
<tr>
<th></th>
<th>Glass/Paramagnet</th>
<th>critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(t)$</td>
<td>$\sim \ln t \Theta(t - t_{\text{int}})$</td>
<td>$\sim [\ln t]^{\frac{3}{2}} \Theta(t - t_{\text{int}})$</td>
</tr>
<tr>
<td>Saturation in sys. of size L</td>
<td>$\sim s L$</td>
<td>$\sim s L$</td>
</tr>
</tbody>
</table>

- Universal log growth (Serbyn et. al., Oganesyan et. al., Bauer et al.)
- Enhanced evolution at the critical point (same as in random XXZ)
- Saturates to extensive value but less than thermal in finite system
- Absence of thermalization because of emergent conserved quantities
Delocalization due to distant resonances

Resonances between decimated sites can generate a slow mode that violates the integrals of motion

\[\Omega \quad J_{\text{eff}} \quad \Omega - \delta \Omega \]

If \(J_{\text{eff}} > \delta \Omega \)

Are these resonances relevant near the random fixed points we found?
Delocalization due to distant resonances

Typical distance between pairs that differ by $\delta \Omega$:

$$L_R = \frac{1}{\alpha_0 \delta \Omega}$$

Typical effective coupling mediated by the chain:

$$J_{\text{eff}} \sim \exp(-a\sqrt{L_R})$$

The resonance condition $J_{\text{eff}} > \delta \Omega$ leads to an equation for L_R:

$$\alpha_0 L_R e^{-a\sqrt{L_R}} > 1$$

No solution for L_R at sufficiently strong disorder! (i.e. for $\alpha_0 < \alpha_s \sim 1$)
Delocalization due to distant resonances

Typical distance between pairs that differ by $\delta \Omega$:

$$L_R \approx \frac{\Omega}{\alpha_0 \delta \Omega}$$

Typical effective coupling mediated by the chain:

$$J_{\text{eff}} \sim \exp(-a \sqrt{L_R})$$

The resonance condition $J_{\text{eff}} > \delta \Omega$ leads to an equation for L_R:

$$\alpha_0 L_R e^{-a \sqrt{L_R}} > 1$$

No solution for L_R at sufficiently strong disorder! (i.e. for $\alpha_0 < \alpha_0^* - 1$)

- Resonances proliferate only below a critical disorder strength!
Outline

- ETH and MBL – brief intro

- RG theory for MBL states
 Dynamical quantum phase transition between MBL states

- RG theory for the MBL transition
 Surprising insight on the delocalization transition and the delocalized state
Coarse Grained Model of coupled blocks

The block parameters:

- Γ_i - Decay rate through block i
- $g_i = \frac{\Gamma_i}{\Delta_i}$ - # of coupled levels
- Δ_i - Level spacing of block i
Coarse Grained Model of coupled blocks

The block parameters:

- Γ_i - Decay rate through block i
- $g_i = \frac{\Gamma_i}{\Delta_i}$ - # of coupled levels
- Δ_i - Level spacing of block i
Coarse Grained Model of coupled blocks

The block parameters:

- \(\Gamma_i \) - Decay rate through block \(i \)
- \(g_i = \frac{\Gamma_i}{\Delta_i} \) - # of coupled levels
- \(\Delta_i \) - Level spacing of block \(i \)

\[
\Gamma_i \quad g_i \quad g_{12} \quad \Gamma_{12} \quad g_{12} \\
\Gamma_1 \quad g_1 \quad h_2 \quad g_2 \quad \Gamma_2 \\
\Gamma_3 \quad g_3 \quad g_{23} \quad \Gamma_3 \\
\Gamma_4 \quad g_4 \quad g_{34} \quad \Gamma_4 \\
\Gamma_5 \quad g_5 \quad g_{45} \quad \Gamma_5
\]
Coarse Grained Model of coupled blocks

The block parameters:

Γ_i - Decay rate through block i

$g_i = \frac{\Gamma_i}{\Delta_i}$ - # of coupled levels

Δ_i - Level spacing of block i

$g_{12} = \frac{\Gamma_{12}}{\Delta_{12}}$
Coarse Grained Model of coupled blocks

The block parameters:

- Γ_i - Decay rate through block i
- $g_i = \frac{\Gamma_i}{\Delta_i}$ - # of coupled levels
- Δ_i - Level spacing of block i

$g_{12} = \frac{\Gamma_{12}}{\Delta_{12}}$

Bath $E + \Delta E$ to Bath E
Renormalization Scheme

Pick fastest decay rate on bond Γ_{12}

$\Gamma_1 g_1 \Gamma_2 g_2 \Gamma_3 g_3 \rightarrow \tilde{\Gamma} \tilde{g} = ?$

$\Gamma_{12} g_{12} \Gamma_3 g_3$
Renormalization Scheme

Pick fastest decay rate on bond Γ_{12}

$\Gamma_1 \quad \Gamma_2 \quad \Gamma_3 \quad \Gamma_{12}$

$g_1 \quad g_2 \quad g_3 \quad g_{12}$

$\tilde{\Gamma} \tilde{g} =$?
Renormalization Scheme

Pick fastest decay rate on bond Γ_{12}

$\Gamma_1 \quad g_1 \quad \Gamma_2 \quad g_2 \quad \Gamma_3 \quad g_3 \quad \Gamma_{12} \quad g_{12} \quad \Gamma_3 \quad g_3$

Deep in localized phase $g_{12}, g_{23} < 1$

$$\tilde{\Gamma} = \frac{\Gamma_{12} \Gamma_{23}}{\Gamma_2} \quad \tilde{g} = \frac{g_{12} g_{23}}{g_2}$$

Deep in delocalized phase $g_{12}, g_{23} > 1$ (diffusive transport)

$$\frac{1}{(l_1 + l_2 + l_3)\Gamma} = \frac{1}{(l_1 + l_2)\Gamma_{12}} + \frac{1}{(l_2 + l_3)\Gamma_{23}} \quad (\text{length} \sim \sqrt{\text{time}})$$
Renormalization Scheme

Pick fastest decay rate on bond Γ_{12}

$\Gamma_1 \quad g_2 \quad \Gamma_2 \quad g_3 \quad \Gamma_3 \quad \Gamma_{12}$

Deep in localized phase $g_{12}, g_{23} < 1$

Deep in delocalized phase $g_{12}, g_{23} > 1$ (diffusive transport)

$$\tilde{\Gamma} = \frac{\Gamma_{12} \Gamma_{23}}{\Gamma_2}$$

$$\tilde{g} = \frac{g_{12} g_{23}}{g_2}$$

$$\frac{1}{(l_1 + l_2 + l_3)\Gamma} = \frac{1}{(l_1 + l_2)\Gamma_{12}} + \frac{1}{(l_2 + l_3)\Gamma_{23}}$$

(length $\sim \sqrt{\text{time}}$)
Preliminary Flow Results

Griffiths phase

\[P(l_{\text{int}}) \sim e^{-d_{\text{int}}} \]

\[t(l_{\text{int}}) \sim e^{d_{\text{int}}} \]
The Many-Body Localization Transition

Based on entanglement subadditivity: (T. Grover, arXiv 1405.1471)

Localized Ergodic

Localized Delocalized Non-Ergodic Ergodic

Disorder strength

Our theory gives the second option
The Many-Body Localization Transition

Based on entanglement subadditivity: (T. Grover, arXiv 1405.1471)

Localized Ergodic

Localized Delocalized Non-Ergodic Ergodic

Disorder strength

Our theory gives the second option
Preliminary Flow Results

Griffiths phase

\[P(I_{im}) \sim e^{-t_{im}} \]
\[f(I_{im}) \sim e^{t_{im}} \]

Wide distribution of decay times for \(a < b \)

L - \log t \sim \frac{4}{2}

L \sim t^\alpha

L \sim \sqrt{t}
Preliminary Flow Results

Griffiths phase

\[P(I_{mm}) \sim e^{-d_{mm}} \]

\[t(I_{mm}) \sim e^{d_{mm}} \]

Wide distribution of decay times for \(a<b \)
The Many-Body Localization Transition

Based on entanglement subadditivity: (T. Grover, arXiv 1405.1471)

Localized Ergodic

Localized Delocalized Non-Ergodic Ergodic

Disorder strength

Our theory gives the second option
Scaling in the localized phase

\[L \sim (\log t)^{\alpha} \]

\[\Phi \sim \text{Golden ratio} \]

Entanglement entropy

Assuming \(S \sim L(t) \)

- Localized phase: \(S \sim \log t \)
- At criticality: \(S \sim (\log t)^{2/\Phi} \)?
“Microscopic” Derivation

- Each block is a random matrix
- Fixed bandwidth W, $\Gamma_i = \Delta_i$ and $g_i = 1$
- Matrix element between neighboring blocks

$$\langle a', b' | \hat{J}_{ij} | a, b \rangle = J_{ij} (1 - \delta_{a' a})(1 - \delta_{b' b})x \quad x \sim N(\mu = 0, \sigma^2 = 1)$$
“Microscopic” Derivation

- Each block is a random matrix
- Fixed bandwidth W, $\Gamma_i = \Delta_i$ and $g_i = 1$
- Matrix element between neighboring blocks
 \[
 \langle a', b' | \hat{J}_{ij} | a, b \rangle = J_{ij}(1 - \delta_{a',a})(1 - \delta_{b',b})x \\
 x \sim N(\mu = 0, \sigma^2 = 1)
 \]
- Decay rate of two blocks given by Fermi golden rule
 \[
 \Gamma_{12} = \frac{2\pi J_{12}^2}{\Delta_{12}} \\
 g_{12} = \frac{\Gamma_{12}}{\Delta_{12}} \\
 \Delta_{12} = \frac{2W}{(N_1N_2)} = 2\Delta_1\Delta_2/W
 \]
“Microscopic” Derivation

- Each block is a random matrix
- Fixed bandwidth W, $\Gamma_i = \Delta_i$ and $g_i = 1$
- Matrix element between neighboring blocks

$$\langle a', b' \mid \hat{J}_{ij} \mid a, b \rangle = J_{ij} (1 - \delta_{a' a}) (1 - \delta_{b' b}) x \quad x \sim \mathcal{N}(\mu = 0, \sigma^2 = 1)$$

- Decay rate of two blocks given by Fermi golden rule

$$\Gamma_{12} = 2\pi \frac{J_{12}^2}{\Delta_{12}} \quad \Delta_{12} = 2W/(N_1 N_2) = 2\Delta_1 \Delta_2 / W$$

$$g_{12} = \frac{\Gamma_{12}}{\Delta_{12}}$$
3 Block Decay Rate

Generalized Fermi golden rule: \((g_{12} \cdot g_{23} < 1)\)

T Matrix

\[
T = J + J \frac{1}{E_i - H_0 + i\eta} J + J \frac{1}{E_i - H_0 + i\eta} J + \ldots
\]

\[
\Gamma = 2\pi |\langle f | T | i \rangle|^2 \rho(E_i)
\]
3 Block Decay Rate

Generalized Fermi golden rule: \((g_{12} g_{23} < 1)\)

\[
T = J + J
\frac{1}{E_i - H_0 + i\eta} J + J
\frac{1}{E_i - H_0 + i\eta} J + J
\frac{1}{E_i - H_0 + i\eta} J + \ldots
\]

\[
\Gamma = 2\pi \langle \langle f | T | i \rangle \rangle^2 \rho(E_i)
\]

For 3 blocks:
\[
\hat{J} = \hat{J}_{12} + \hat{J}_{23}
\]

\[
\eta = \Gamma_2
\]

\[
\langle f | T | i \rangle = \sum_m \langle f | (J_{12} + J_{23}) | m \rangle \frac{1}{E_i - E_m + i\eta} \langle m | (J_{12} + J_{23}) | i \rangle
\]
3 Block Decay Rate (2)

\[\Gamma_{12} g_{12} \Gamma_{31} g_{31} \rightarrow \Gamma_{12} g_{12} \Gamma_{31} g_{31} \]

Generalized Fermi golden rule: \((g_{12}, <1,g_{31}>1)\)

The decay of blocks 2 and 3: \(\Gamma_{23} = 2\pi \frac{\Gamma_{23}^2}{\Delta_{23}}\)
Open Questions

• The critical point
 – What is the flow at the critical point?
 – Verify infinite randomness scaling
 – Extract universal exponents
• Entanglement entropy
 – Logarithmic evolution?
 – Enhanced evolution at the critical point?
 – Volume law entropy in the Griffiths phase?
• …
Open Questions

- The critical point
 - What is the flow at the critical point?
 - Verify infinite randomness scaling
 - Extract universal exponents
- Entanglement entropy
 - Logarithmic evolution ?
 - Enhanced evolution at the critical point ?
 - Volume law entropy in the Griffiths phase ?
- ...
Summary

1. Dynamical quantum phase transitions between distinct localized states.
 - Formulation of RG for time evolution
 - Universal dynamical description the “phases” and the critical point
 - Conserved quantities
 - Logarithmic evolution of entanglement entropy

2. Dynamical RG for the many-body localization transition
 - Intermediate Griffiths phase with anomalous diffusion
 - Derivation of RG rules using generalized Fermi golden rule
Summary

1. Dynamical quantum phase transitions between distinct localized states.
 - Formulation of RG for time evolution
 - Universal dynamical description the "phases" and the critical point
 - Conserved quantities
 - Logarithmic evolution of entanglement entropy

2. Dynamical RG for the many-body localization transition
 - Intermediate Griffiths phase with anomalous diffusion
 - Derivation of RG rules using generalized Fermi golden rule