We consider quantum quenches in one dimensional Bose gases where we prepare the gas in the ground state of a parabolic trap and then release it into a small cosine potential. This cosine potential breaks the integrability of the 1D gas which absent the potential is described by the Lieb-Liniger model. We explore the consequences of this cosine potential on the thermalization of the gas. We argue that the integrability breaking of the cosine does not immediately lead to ergodicity inasmuch as we demonstrate that there are residual quasi-conserved quantities post-quench. We demonstrate that the quality of this quasi-conservation can be made arbitrarily good.
Quantum Quenches in 1D Bose Gases: Glimmers of Quantum KAM

Robert Konik
May 16, 2014
Perimeter Institute

Giuseppe Brandino, Universiteit van Amsterdam
J.-S. Caux, Universiteit van Amsterdam
Integrable Quantum Quenches in 1D Bose Gases

First consider a quantum quench where we prepare the gas in the ground state of a trap and at \(t=0 \), we release the trap:

\[
V_{\text{confining}}(x)
\]

\(t=0 \)

\[
V_{\text{confining}}(x)
\]

gas in a parabolic potential, \(t<0 \)

gas unconfined, \(t>0 \)

For \(t>0 \) the gas is governed by the Lieb-Liniger model, an integrable model.

\[
H = - \sum_{j=1}^{N} \frac{\partial^2}{\partial z_j^2} + 2c \sum_{1 \leq j < k} \delta(z_j - z_k)
\]

In the absence of a confining potential, the dynamics of the gas are governed by an infinite set of conserved charges, \(Q_i, i = 1, 2, 3, \ldots \)
Quantum Newton’s Cradle

Counter-propagating clouds of 1D Bose condensates are seen not to thermalize.

Is this a consequence of the gas’ (quasi-)integrability?

What does it mean to be quasi-integrable here?
Generalized Gibbs Ensemble

In an attempt to understand this experiment, it was conjectured that the thermalization of this system (and integrable models in general) is not controlled by the Gibbs ensemble

$$\hat{\rho}_{\text{Gibbs}} = \frac{e^{-\beta H}}{\text{Tr} e^{-\beta H}}$$

but by a thermodynamic ensemble that knows of all the conserved quantites, Q_i, $i=1,...$, of the system.

$$\hat{\rho}_{\text{Generalized Gibbs}} = \frac{e^{-\sum \beta_i Q_i}}{\text{Tr} e^{-\sum \beta_i Q_i}}$$

Rigol, Dunjko, Yurovsky, Olshanii, PRL 98, 050405 (2007)

M. Cazalilla, PRL 97 156403 (2006)
P. Calabrese, F.H.L. Essler, and M. Fagotti, PRL 106, 227203 (2011)
T. Barthel and U. Schollwöck, PRL 100, 100601 (2008)

Non-integrable quenches: release of gas into weak cosine potential

For $t>0$, because the gas is in a cosine potential, the dynamics are no longer integrable.

Is the behavior of the gas now completely ergodic? Or is there a smooth crossover from quantum integrable to quantum chaotic?

Another way of asking this question is whether there is some sort of quantum KAM theorem operating here.
Classical KAM Theorem

What does classical KAM say? Take a Hamiltonian weakly deformed from its integrable point:

\[H_{\text{full}}(p_i, q_j) = H_{\text{integrable}}(p_i) + \epsilon H_{\text{pert}}(p_i, q_j) \]

\(p_i \): action variables
\(q_j \): angle variables

When \(\epsilon = 0 \), all solutions are quasi-periodic, i.e. lie on invariant tori

\[\dot{q}_j = \frac{\partial H_{\text{integrable}}}{\partial p_j} \equiv \omega_j \]

KAM say that when the perturbation is turned on, certain quasi-periodic trajectories for \(\epsilon = 0 \) where the frequencies, \(\omega_j \), satisfy a non-resonancy condition continue to exist as solutions for finite strength of the perturbation.

Classically this seems to promise a smooth integrable to ergodic crossover.
Nekhoroshev Estimates

Nekhoroshev says that for any trajectory of the full Hamiltonian, the time dependence of the action variables is restricted to

$$|p_j(t) - p_j(0)| < \epsilon^{\frac{1}{2n}}$$

where n is the number of degrees of freedom for times t, less than

$$t < \exp\left(c\left(\frac{1}{\epsilon}\right)^{\frac{1}{2n}}\right)$$

We have found a construction for the quantum case of Lieb-Liniger that exists in this spirit.

In particular we can construct nearly conserved quantities.
Time evolution of quantities post-quench

We construct such nearly conserved charges by exploiting our ability to compute the time dependence of operators.

So for example, we can compute the time evolution of the density profile of the gas post-quench.

We do so using a numerical renormalization group that exploits the integrability of Lieb-Liniger.

J.-S. Caux and RMK: PRL 109, 175301 (2012)
Numerical Renormalization Group for Perturbed Integrable Theories

The method can in principle study any Hamiltonian that takes the form:

\[H = H_{\text{known}} + \Phi_{\text{perturbation}} \]

- \(H_{\text{known}} \) is a conformal/integrable theory, i.e., Lieb-Liniger model
- \(\Phi_{\text{perturbation}} \) is a trapping potential

Consider the model on a finite sized ring of circumference, \(R \)

Spectrum of \(H_{\text{known}} \) then becomes discrete and we can order states in terms of ascending energy.
We are able to compute matrix elements with ABACUS (J.-S. Caux).

\[\Phi_{ij} = \langle i \mid \Phi_{\text{perturbation}} \mid j \rangle \left|_{H_{\text{Known}}} \right. \]

Truncate Hilbert space, making it finite dimensional. This allows one to write full Hamiltonian as a finite dimensional matrix.

\[H = \begin{bmatrix}
 E_1 & \Phi_{12} & \cdots & \Phi_{1n} \\
 \Phi_{21} & E_2 & \cdots & \Phi_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \Phi_{n1} & \Phi_{n2} & \cdots & E_{n-1} \\
 \end{bmatrix} \]

Diagonalize \(H \) numerically and extract spectrum.

Key idea: Using the “known” basis as a computation basis.
Second Step of Numerical Renormalization Group

The next step is to find a way to include states previously tossed away using same idea as the one Wilson applied to the Kondo model:

- Spin impurity interacting with bath of electrons
- Map to 'Kondo lattice'
- Spin impurity living on a semi-infinite lattice where the electrons on the lattice have decaying hopping amplitudes the further they are from the impurity
Wilson treated the solution of this lattice problem iteratively:

1. First diagonalize small system
2. Throw away high energy eigenstates
3. Add a site to truncated system
4. Diagonalize new system and retruncate
5. Repeat
Numerical Renormalization Group for Continuum Theories

For perturbed integrable models, the same principle applies:

\[H = H_{\text{Known/Exactly Solvable}} + \Phi_{\text{Perturbation}} \]

- Lieb-Liniger
- trap potential

We “map” our perturbed Lieb-Liniger to a lattice on which are arranged the states of \(H_{\text{Lieb-Liniger}} \) in order of increasing energy.

The metric in the field theoretic Hilbert space is different but the idea is the same.

The reason why it works here is that \(\Phi_{\text{perturbation}} \) is relevant.

J. S. Caux and RK, PRL 109, 175301 (2012): 1D Bose Gases
RK and Y. Adamov, PRL 98, 147205 (2007): perturbed conformal minimal models
RK and Y. Adamov, PRL 102, 097203 (2009); Andrew James and RK, PRB 87, 241103 (2013):
 2+1D Systems of Coupled Quantum Ising Chains
 perturbed CFTs
Time Evolution of Gas After Release

\[V_{\text{confining}}(x) \]

NRG gives wavefunction at t=0 as

\[|\psi(0)\rangle = \sum_{\text{cosine eigenstates}} c_{\text{cosine}} |E_{\text{cosine}}\rangle \]

Cosine eigenstates are determined with NRG

Time dependence of wavefunction is determined for generic times as

\[|\psi(t)\rangle = \sum_{\text{cosine eigenstates}} c_{\text{cosine}} e^{iE_{\text{cosine}}t} |E_{\text{cosine}}\rangle \]
Excited Energy Spectra of Gas in Cosine Potential

Spectrum
Cosine Potential, N=14 c=7200
Analytics \rightarrow Free fermion representation $+$ $1/c$ corrections

red – analytics blue - numerics

$A_{\cos} = 0.1$

1200 states can be described with $10^{(-4)}$ accuracy

$A_{\cos} = 3$

300 states can be described with $10^{(-4)}$ accuracy
Time Evolution of (Formerly) Conserved Charges

So like for the density operator, we can compute the time evolution of the expectation value of the Lieb-Liniger charges:
Time Evolution of Gas After Release

NRG gives wavefunction at t=0 as

\[|\psi(0)\rangle = \sum_{\text{cosine eigenstates}} c_{\text{cosine}} |E_{\text{cosine}}\rangle \]

cosine eigenstates are determined with NRG

Time dependence of wavefunction is determined for generic times as

\[|\psi(t)\rangle = \sum_{\text{cosine eigenstates}} c_{\text{cosine}} e^{iE_{\text{cosine}}t} |E_{\text{cosine}}\rangle \]
Conserved Quantities, Q_i, in the Lieb-Liniger Model

The N-particle eigenfunctions of Lieb-Liniger model are characterized by N distinct rapidities, λ_i, which are solutions of the Bethe equations:

$$|s\rangle = |\lambda_1, \cdots, \lambda_N\rangle; \quad e^{i\lambda_i L} = \prod_{i \neq j} \frac{\lambda_i - \lambda_j + ic}{\lambda_i + \lambda_j - ic}$$

Once we know the λ_i's, it is straightforward to write down the action of the charges on the state: Korepin and Davies, arXiv:1109..6604

$$P|\lambda_1, \cdots, \lambda_N\rangle = \left(\sum_{i=1}^{N} \lambda_i\right)|\lambda_1, \cdots, \lambda_N\rangle$$

$$H|\lambda_1, \cdots, \lambda_N\rangle = \left(\sum_{i=1}^{N} \lambda_i^2\right)|\lambda_1, \cdots, \lambda_N\rangle$$

$$Q_n|\lambda_1, \cdots, \lambda_N\rangle = \left(\sum_{i=1}^{N} \lambda_i^n\right)|\lambda_1, \cdots, \lambda_N\rangle$$

We use the Lieb-Liniger eigenstates as a computational basis making the computation of the time evolution of the charges straightforward.
New Quasi-Conserved Charges

We can construct charges that are linear combinations of the Lieb-Liniger charges that are quasi-conserved.

\[Q_{\text{eff}}(t) = a_0 + \sum_{i=1}^{n-1} a_i Q_{2i} \]

The more charges in the linear combination the better the time invariance.
New Conserved Charges: More Than One

We can construct more than one charge:

\[Q_{\text{eff}}(t) = a_0 + \sum_{i=n}^{2n-1} a_i Q_{2i} \]

Again the more charges in the linear combination the better the time invariance.

Fluctuations \(\sim e^{-\frac{NQ}{m^2\omega_0^2L^4}} \)

- \(N_Q \): number of charges
- \(\omega_0 \): frequency of initial parabolic trap
- \(L \): system size
Charges Are Conserved As Operators

To demonstrate these charges are conserved as operators, we consider their off-diagonal matrix elements.

We see as more charges are used in the linear combination, the off-diagonal elements become successively smaller.
Why Can We Find Quasi-Conserved Charges?

We have constructed the new effective charges such that a particular expectation value of the charge has (near-)zero time variation.

\[
\langle \partial_t Q_{\text{eff}}(t) \rangle_{\text{initial condition}} = \sum_i a_i \partial_t \langle Q_i(t) \rangle_{\text{init. cond.}} \approx 0
\]

This is similar to what Essler, Kehrein, Manmana, and Robinson (arXiv-1311.4557) did in the case of the spinless fermions.

But we have also shown that these effective charges are (nearly) zero as an operator equality (not unlike Kollar, Wolf, Eckstein PRB 84, 054304 (2011)).

\[
\partial_t Q_{\text{eff}} = i[V_{\text{cosine}}, Q_{\text{eff}}] - t[V_{\text{cosine}}, [V_{\text{cosine}}, Q_{\text{eff}}]] - i \frac{t^2}{2} [V_{\text{cosine}}, V_{\text{cosine}}, [V_{\text{cosine}}, Q_{\text{eff}}]] + \cdots = 0
\]

\[
= 0 = 0 = 0
\]

if restricted to finite energy Hilbert space

if \(V_{\text{perturbation}}(=V_{\text{cosine}}) \) has a finite number of Fourier modes

Otherwise we get the situation as in

Why Can We Find Quasi-Conserved Charges?

Each state is associated with a set of quantum numbers, \(\{n_i\} \):

\[
|s\rangle = |\lambda_1, \cdots, \lambda_N\rangle;
\]

\[
e^{i\lambda_i L} = \prod_{i \neq j} \frac{\lambda_i - \lambda_j + ic}{\lambda_i + \lambda_j - ic}
\]

\[
|s\rangle = |\lambda_1, \cdots, \lambda_N\rangle = |n_1, \cdots, n_N\rangle
\]

\[
2\pi n_i = L\lambda_i + i \sum_{j \neq i} \log\left(\frac{\lambda_i - \lambda_j + ic}{\lambda_i - \lambda_j - ic}\right)
\]

We will find a linear combination of charges \(Q_{\text{eff}} = \sum_i a_i Q_i \) such that we zero out all matrix elements of the form

\[
\langle s | [V_{\text{cosine}}, Q_{\text{eff}}] | s' \rangle = 0
\]

where the states, \(|s\rangle, |s'\rangle \) are constructed with quantum numbers \(n_i \leq n_{\text{max}} \) for some \(n_{\text{max}} \).
Why Can We Find Quasi-Conserved Charges?

We can choose the a_i such that for a given quantum number, n_{max}, states $|s\rangle, |s'\rangle$ involving quantum numbers $n_i < n_{\text{max}}$ are such that

first order

$$\langle s | [V_{\text{cosine}}, Q_{\text{eff}}] | s' \rangle = 0$$

states involving quantum numbers less than n_{max}

number of charges needed for N particles:

$$N_Q \sim \frac{(2n_{\text{max}})^N}{2(N - 1)!}$$

second order

$$\langle s | [V_{\text{cosine}}, [V_{\text{cosine}}, Q_{\text{eff}}]] | s' \rangle = 0$$

states involving quantum numbers less than $n_{\text{max}} - n(k)_{\text{cosine}}$

third order is 0 for states with quantum numbers less than $n_{\text{max}} - 2n(k)_{\text{cosine}}$, etc.
Why Can We Find Quasi-Conserved Charges?

Things are considerably better for the $c = \infty$. One needs far fewer charges

$$N_Q = \frac{n_{\text{max}}}{2}$$

to zero out a given block and the block shrinks much more slowly as one goes up in order.

1st order

$$C_1 = \langle s | [V_{\text{cosine}}, Q_{\text{eff}}] | s' \rangle = 0$$

2\textsuperscript{nd-3rd} orders

$$C_2 = \langle s | [V_{\text{cosine}}, C_1] | s' \rangle = 0$$
$$C_3 = \langle s | [V_{\text{cosine}}, C_2] | s' \rangle = 0$$

4th-5th orders

$$C_4 = \langle s | [V_{\text{cosine}}, C_3] | s' \rangle = 0$$
$$C_5 = \langle s | [V_{\text{cosine}}, C_4] | s' \rangle = 0$$

6th-7th orders

$$C_6 = \langle s | [V_{\text{cosine}}, C_5] | s' \rangle = 0$$
$$C_7 = \langle s | [V_{\text{cosine}}, C_6] | s' \rangle = 0$$
Conclusions

We are able to describe post-quench dynamics in the perturbed Lieb-Liniger model out to long finite times.

Using this, we have been able to construct quasi-conserved quantities taken as linear combinations of the Lieb-Liniger charges.

These charges are conserved as operators when acting on the low-energy Hilbert space.