This talk is divided into two parts. In the first part, I discuss a scheme of fault-tolerant quantum computation for a web-like physical architecture of a quantum computer. Small logical units of a few qubits (realized in ion traps, for example) are linked via a photonic interconnect which provides probabilistic heralded Bell pairs [1]. Two time scales compete in this system, namely the characteristic decoherence time T_D and the typical time T_E it takes to provide a Bell pair. We show that, perhaps unexpectedly, this system can be used for fault-tolerant quantum computation for all values of the ratio T_D/T_E. The second part of my talk is about something entirely different, namely the role of contextuality in quantum computation by magic state distillation. Recently, Howard et al. [2] have shown that contextuality is a necessary resource for such computation on qudits of odd prime dimension. Here we provide an analogous result for 2-level systems. However, we require them to be rebits. [joint work with Jake Bian, Philippe Guerin and Nicolas Delfosse] [1] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz4, L.-M. Duan, and J. Kim, Phys Rev A 89, 22317 (2014). [2] Mark Howard, Joel Wallman, Victor Veitch & Joseph Emerson, Nature doi:10.1038/nature13460 (2014).
Quantum codes

From thresholds to foundations

Robert Raussendorf (UBC), Perimeter Institute, July 2014
Part I

Fault-tolerance in sparse connectivity geometries

joint work with Chris Monroe, Jungsang Kim, Angela Ruthven and Ken Brown
Planar architecture

elementary logical unit (ELU)

qubit

error threshold = 1%
operational mult. overhead $\sim \log^3$ (comp size)

Interaction graph has bounded degree

ELU

qubit

error threshold ???
overhead ??? should be better than planar
Modular ion trap with photonic interconnects

Connectivity graph characterized by:

- Low (bounded) degree
- Potentially high dimensionality
Modular ion trap with photonic interconnects

Physical basis

Probabilistic heralded entanglement via photonic link

Modular ion trap with photonic interconnects

Obstacle:

! While entanglement is attempted, everything decoheres.
Modular ion trap with photonic interconnects

- Challenge: Build a scalable fault-tolerant universal quantum computer.

- Idea: Probabilistic heralded entanglement generation between ion qubits using photons.

- Obstacles: Entangling time τ_E may be long compared to the decoherence time τ_D.

Early experiments: $\frac{\tau_E}{\tau_D} = 10^3$, Now: $\frac{\tau_E}{\tau_D} = 0.2$

Q: Is there a maximal ratio τ_E/τ_D for fault-tolerance?
Modular ion trap with photonic interconnects

Theorem 1 For ELUs of size $n \geq 5$ and small gate error $\epsilon > 0$, efficient universal and fault-tolerant quantum computation is possible for any ratio τ_ϵ/τ_D.

- There is no threshold τ_ϵ/τ_D (!)
- Architecture has constant multiplicative overhead $c(\tau_\epsilon/\tau_D)$.
- Flipside: $c(\tau_\epsilon/\tau_D)$ increases exponentially in τ_ϵ/τ_D.

C. Monroe et al., PRA (2014). Also see: Y. Li et al., PRL 105, 250502 (2010), and K. Fujii and Y. Tokunaga, PRL 105, 250503 (2010).
Theorem 1 For ELUs of size $n \geq 5$ and small gate error $\epsilon > 0$, efficient universal and fault-tolerant quantum computation is possible for any ratio τ_E/τ_D.

- There is no threshold τ_E/τ_D (!)
- Architecture has constant multiplicative overhead $c(\tau_E/\tau_D)$.
- Flipside: $c(\tau_E/\tau_D)$ increases exponentially in τ_E/τ_D.

C. Monroe et al., PRA (2014). Also see: Y. Li et al., PRL 105, 250502 (2010), and K. Fujii and Y. Tokunaga, PRL 105, 250503 (2010).
Summary

- No practical solution yet, playing field wide open

- Low (bounded) degree of the connectivity graph
- Potentially high-dimensional embedding

→ Calls for LDPC codes
Summary

- No practical solution yet, playing field wide open

- Low (bounded) degree of the connectivity graph
- Potentially high-dimensional embedding

→ Calls for LDPC codes
Quantum code words contradict local realism

David P. DiVincenzo
IBM Research Division, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598

Asher Peres
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 8 November 1996)

Quantum code words are highly entangled combinations of two-state systems. The standard assumptions of local realism lead to logical contradictions similar to those found by Bell, Kochen, and Specker, Greenberger, Horne and Zeilinger, and Mermin. The new contradictions have some noteworthy features that did not appear in the older ones. [S1050-2947(97)00306-5]

PACS number(s): 03.65.Bz, 89.80.+h, 89.70.+c

Quantum code words are highly entangled combinations of two-state quantum systems (qubits). They are structured in such a way that if one (or sometimes more) of the qubits is perturbed, there remains enough quantum information encoded in the remaining qubits for restoring the original code word unambiguously [1–4]. In this article, we investigate some properties of the five-qubit code words invented by Bennett et al. [5] (which are equivalent, up to a change of bases of the individual qubits, to the five-qubit code words of Laflamme et al. [2]). The logical 0 is represented by the

\[
\sigma_{\text{XZOXZ}}, \quad \sigma_{\text{YXYYZ}}, \quad \sigma_{\text{ZXZXZ}}, \quad \sigma_{\text{YXYYZ}}, \quad \pm \sigma_{\text{XZYZZ}},
\]

and their cyclic permutations. The upper and lower signs refer to \(|0\rangle\) and \(|1\rangle\), respectively, (this convention will be followed throughout this article). These 32 operators (with either choice of sign) form an Abelian group; those that are unsigned in Eq. (3) form an invariant subgroup. The existence of such a group associated with this type of quantum
QC by state injection

[1,2]

QC by measurement

[3,4]

[*] joint work w. Jake Blan, Philippe Guerin, Nicolas Delfosse; on arXiv soon.
Contextuality is about speedup

\[d > 2 \]

\[[1,2] \]

Contextuality is about computability

\[d = 2 \]

\[[3,4] \]

\[[*] \]

[*] joint work w. Jake Blan, Philippe Guerin, Nicolas Delfosse; on arXiv soon.
Outline

1. Review
 (a) Hidden variable models & contextuality
 (b) Contextuality in measurement-based quantum computation
 (c) Contextuality, Wigner function negativity in QC with magic states; *What goes wrong for qubits*

2. Quantum computation with magic states on rebits
 (a) Computational scheme
 (b) Matching Wigner function
 (c) Matching notion of contextuality
 (d) Results and comparison with qudits
Contextuality of QM

What is a non-contextual hidden-variable model?

Quantum mechanics

\[|\Psi\rangle \]

Hidden-variable model

\[\text{A measured} \rightarrow \text{output } \lambda_A \\
\text{B measured} \rightarrow \text{output } \lambda_B \\
\text{C measured} \rightarrow \text{output } \lambda_C \]

Noncontextuality: Given observables \(A, B, C \): \([A, B] = [A, C] = 0 \):

\(\lambda_A \) is independent of whether \(A \) is measured jointly with \(B \) or \(C \).

Theorem [Kochen, Specker]: For \(\text{dim}(\mathcal{H}) \geq 3 \), quantum-mechanics cannot be reproduced by a non-contextual hidden-variable model.
Quantum computation by measurement

- Information written onto a cluster state, processed and read out by one-qubit measurements only.
- The resulting computational scheme is *universal*.

Classical processing relations

input → classical control computer → output

choice of bases

quantum device

measurement outcomes

All classical processing is \textit{mod-2 linear}!

- Linear functions are for free.
- Non-linear functions are of value

What resources are needed to evaluate non-linear functions?
An extension of Theorem 1

Can the condition of determinism be relaxed?

Theorem 2: Be M_{ps} an MBQC on qubits that probabilistically evaluates a non-linear Boolean function on m bits of input, with success probability p_S. If $p_S > 1 - \frac{1}{2^m}$ then M_{ps} is contextual.

Theorem 3: Be M_{ps} an MBQC on qubits that evaluates with success probability p_S a bent function on m bits. Then M_{ps} is contextual if $p_S > \frac{1}{2} + \left(\frac{1}{2}\right)^{m/2+1}$.

An MBQC can be contextual even if its output is almost completely random.
Different model: QC by state injection

- Non-universal restricted gate set: e.g. Clifford gates.
- Universality reached through injection of magic states.
- As of now, leading scheme for fault-tolerant QC.
QC by state injection

Which properties must the magic states have to enable universality?

A: Wigner function negativity, contextuality
[quantum] mechanics in phase space

- The Wigner function

\[W_\psi(p, q) = \frac{1}{\pi} \int d\xi e^{-2\pi i\xi p} \psi^\dagger(q - \xi/2)\psi(q + \xi/2). \]

is a quasi-probability distribution.
[quantum] mechanics in phase space

- The Wigner function

\[W_\psi(p, q) = \frac{1}{\pi} \int d\xi e^{-2\pi i p \xi} \psi^\dagger(q - \xi/2)\psi(q + \xi/2). \]

is a quasi-probability distribution.
[quantum] mechanics in phase space

- Wigner function can go negative
- Marginals must be non-negative

Wigner function negativity is an indicator of quantumness

Which states have positive/negative Wigner function?
Hudson's theorem

Which states have positive/ negative Wigner function?

Theorem. A pure state ψ has a non-negative Wigner function if and only if and only if ψ is Gaussian, i.e. $\psi(q) \sim e^{2\pi i (q\theta + xq)}$.
Wigner functions for qudits

Possible Wigner function for a qutrit

Wigner functions can be adapted to finite-dimensional state spaces.
Wigner functions for n qudits – Definition

- W is built from qudit Pauli operators $T_a = Z(a_Z)X(a_X)$:

 $$W_{\rho}(\mathbf{v}) = \frac{1}{d^n} \text{Tr}(A_{\mathbf{v}} \rho), \quad \forall \mathbf{v} \in \mathbb{Z}_d^n \times \mathbb{Z}_d^n,$$

 where

 $$A_{\mathbf{v}} = T_{\mathbf{v}} A_0 T_{\mathbf{v}}^\dagger,$$

 and

 $$A_0 = \frac{1}{d^n} \sum_{\mathbf{v}} \omega^{a_Z \cdot a_X/2 \mod d_T_{\mathbf{v}}}.$$

- In Eq. (3), replace $\omega^{a_Z \cdot a_X/2 \mod d}$ by $i^{a_Z \cdot a_X \mod 4}$ for $d = 2.$
Wigner functions for qudits – Properties

Elementary properties

- W is linear in ρ.
- The marginals of W are probability distributions.
- W is informationally complete.
Wigner functions for qudits – Properties

If the dimension d is a power of an odd prime, then

Theorem. [extended Gottesman-Knill theorem] The evolution of states ρ with positive Wigner function under Clifford gates and Pauli measurements can be efficiently classically simulated.

Consequence:
- Wigner function negativity is necessary for a quantum speedup

*: V. Veitch et al., NJP 2012.
Contextuality

\[P_i: \text{projector on stabilizer state} \]

\[\max \langle \sum_i P_i \rangle_{\text{class}} =: \alpha(G) \]

\[\max \langle \sum_i P_i \rangle_{\text{QM}} =: \theta(G) \]

\[\theta(G') > \alpha(G') \implies \text{setting contextual} \quad [1] \]

\[\langle \Psi | \sum P_i | \Psi \rangle > \alpha(G') \implies |\Psi\rangle \text{ contextual} \quad [2] \]

Qudit state space

- All positive pure states are stabilizer states [Gross].
- Clifford ops on positive states efficiently simulatable [Veitch et al.]
- Set of positive states = set of non-contextual states [Howard et al.]

Contextuality, Wigner negativity: necessary resources for QC.

*** end of review ***
Contextuality and Wigner negativity in QC by state injection on rebits
QC by state injection with rebits

- We devise a universal scheme of quantum computation by state injection for rebits.

For this scheme, the following properties of $d > 2$ are restored:

- [discrete Hudson’s thm] A state is pure if and only if it is a CSS state.
- The rebit Wigner function is covariant under all CSS-ness preserving operations.
- [extended Gottesman-Knill theorem] CSS-ness preserving operations on positive states are efficiently simulatable.
- W_ρ is positive $\implies \rho$ is non-contextual.

Contextuality, Wigner negativity: necessary resources for QC
Tasks

1. Devise universal scheme of quantum computation by state injection on rebits

2. Construct matching Wigner function

3. Find matching notion of state-dependent contextuality
QC by state injection on rebits

- Non-universal gate set: CSS-ness preserving Clifford gates.
- Universality reached through injection of magic states.
1. Computational scheme

- Use encoding of n qubits in $n + 1$ rebits*:

$$|\Psi\rangle \rightarrow \mathcal{R}(|\Psi\rangle) \otimes |R\rangle_{n+1} + \mathcal{I}(|\Psi\rangle) \otimes |I\rangle_{n+1}.$$

- Restricted gate set: CSS-ness preserving operations

$CNOT$s, H_{all}, Pauli flips, measurements of Z_i, X_i.

- Use magic states

$$|A\rangle = \frac{|0\rangle|0\rangle + |1\rangle|0\rangle + |1\rangle}{\sqrt{2}}$$
$$|B\rangle = \frac{|0\rangle|+\rangle + |1\rangle|-\rangle}{\sqrt{2}}.$$

1. Computational scheme

- Use encoding of \(n \) qubits in \(n + 1 \) rebits*:
 \[
 |\Psi\rangle \rightarrow R(|\Psi\rangle) \otimes |R\rangle_{n+1} + I(|\Psi\rangle) \otimes |I\rangle_{n+1}.
 \]

- Restricted gate set: CSS-ness preserving operations
 \(CNOTs, H_{all}, \) Pauli flips, measurements of \(Z_i, X_i. \)

- Use magic states
 \[
 |A\rangle = \frac{|0\rangle|0\rangle + |1\rangle|1\rangle}{\sqrt{2}}
 \]
 \[
 |B\rangle = \frac{|0\rangle|+\rangle + |1\rangle|-\rangle}{\sqrt{2}}.
 \]

1. Computational scheme

- Devise circuits for the various encoded gates.

Example: circuit for code merging

Purpose: Merge separately encoded ancillas into one code block.
2. Rebit Wigner function \(W_\rho \)

- \(W \) is a quasi-probability distribution.
- Built from Pauli/translation operators \(T_a = Z(a_Z)X(a_X) \):

\[
W_\rho(\mathbf{v}) = \frac{1}{2^n} \text{Tr} A_{\mathbf{v}} \rho, \quad \forall \mathbf{v} \in \mathbb{Z}_2^n \times \mathbb{Z}_2^n,
\]

where

\[
A_{\mathbf{v}} = T_{\mathbf{v}} A_{\mathbf{0}} T_{\mathbf{v}}^\dagger,
\]

and

\[
A_{\mathbf{0}} = \frac{1}{2^n} \sum_{\mathbf{v} | \mathbf{v}_Z \cdot \mathbf{v}_X = 0} 1 T_{\mathbf{v}}.
\]
2. Rebit Wigner function W_ρ

Illustration:
Positivity of CSS-states.

- The joint eigenstates of XZ, ZX, $-YY$ are non-CSS and have negative Wigner function.

- The joint eigenstates of the observables in all other contexts are CSS and have positive Wigner function.

- Consequence of $\prod_{O \in \text{context}} O = \pm I$.
2. Rebit Wigner function W_ρ

- W is a quasi-probability distribution.
- Built from Pauli/translation operators $T_a = Z(a_Z)X(a_X)$:

$$W_\rho(v) = \frac{1}{2^n} \text{Tr} A_v \rho, \quad \forall v \in \mathbb{Z}_2^n \times \mathbb{Z}_2^n,$$

(4)

where

$$A_v = T_v A_0 T_v^\dagger,$$

(5)

and

$$A_0 = \frac{1}{2^n} \sum_{v | v_z \cdot v_x = 0} 1 T_v.$$

(6)
3. Contextuality & Wigner functions

Lemma. $W_\rho \geq 0 \rightarrow$ CSS-measurements on ρ are described by a non-contextual HVM.

Proof sketch: A positive Wigner function is a non-contextual HVM. Consider a POVM with elements E_a. The probability of outcome a is

$$p_a = \sum_{u \in \mathbb{Z}_2^n} W_{E_a}(u)W_\rho(u).$$

For the allowed measurements, all $W_{E_a} \geq 0$. Therefore may identify

- $\{u \in \mathbb{Z}_2^n\}$: set of states
- $W_\rho(u)$: probability of state u
- W_{E_a} : conditional probability of outcome a given u.

Need to check that the conditional probability distributions $\{p_a(E)\}$ are compatible under taking marginals. \Rightarrow Works! Have a non-contextual HVM. □

Wigner function negativity is necessary for contextuality.
Result

Theorem. In quantum computation by state injection on rebits, Wigner negativity of the magic states is necessary for the hardness of classical simulation.

Theorem. In quantum computation by state injection on rebits, contextuality and Wigner negativity of the magic states are necessary for computational universality.
Open questions

- Why does contextuality play different roles in QC with magic states and MBQC?

- Covariance is an important property of Wigner functions. Does covariance play any role in MBQC?
Questions Re fault-tolerance

- For which restricted gate sets does quantum computation by state injection work?

- Is there any favourable alternative to Clifford gates as the restricted gate set?

- Is there any favourable alternative to magic state distillation?