D constant depth + logical

D dimensions $\Rightarrow \Theta_D$
constant depth & logical dimensions $\Rightarrow \Theta_D$ (Bravyi-König)

Pastawski-Yoshida
Pastawski-Beverland-König

Subsystem
No string operators
\[\{ \sum_{n,k,d} \} \text{ std code} \]

code block \[\sum_{i=1}^{m} UR \overline{U} \]
(Bravyi-König) subsystem
NO string operators
TQFT

[[n, k, d]] stabilizer code

Code block \[U_1 R_i U_1^{-1} \]

\[|R_i| \leq d \]
\[\{\mathbf{I}_{n}, \mathbf{K_{d}}\} \text{ std code} \]

code block

\[|R_{i}| < d \]

\[\bigcup_{1}^{m} \mathbf{U}_{R_{i}} \mathbf{U}_{R_{i}}^{\dagger} \text{ correctable} \]
[[n, k, d]] stabilizer code

code block $\prod_{i=1}^{m} U_i R_i U R$

$|R_i| = d$

logical unitary $U = \prod_{i=1}^{m} U_i \otimes I$
[[n, k, d]] stack code

code block \(\prod_{i=1}^{m} U R \cdot U \bar{R} \)

\(|R_i| < d \)

Logical unitary \(U = \prod_{i=1}^{m} U_i \otimes I \)

\(U \in O_{m-1} \)

\(\mathcal{P}_0 = \text{id, Pauli} \)

\(\mathcal{P}_1 = \text{Clifford} \) x phase
\[\mathcal{P}_e = \{ U : \forall u, uPUU^{-1} \in \mathcal{R}_{d-1}, \forall p \in \mathcal{R}_3 \} \]
\[P_e = \{ U : UPU^{-1} \in P_{k-1}, \forall P \in P_3 \} \]

Idea: Cleaning Lemma
\[P_e = \{ U : UPU^{-1} = P_{e-1}, VPUV^{-1}P = P_3 \} \]

Idea: Cleaning Lemma

R correctable

Logical Pauli $P \rightarrow P' = PS$, Set 6
\[P_e = \{ U : UPU^{-1} < P_{k-1}, \forall P \in P \} \]

Idea: Cleaning Lemma

- \(R \) correctable
- Logical Implication: \(P \rightarrow P' = PS, S \subseteq F \)
- \(P' \) unsupported on \(R \)
 \[P' = I \otimes P \]
R correctable

Logical rank $p \rightarrow p' = pS$, S_{estab}

p' unsupported on R $p' = I_p \otimes P$

Logical operator U supported on R
$P = \text{any logical Pauli, unsupported on } R$

$U = U_1 \otimes I$

$P = I \otimes \overline{P}$
\(P = \text{any logical Pauli, unsupported on R} \)

\[
U = U_1 \otimes I \quad UPU^{-1} = P
\]

\[
P = I \otimes P
\]
P = any logical Pauli, unsupported on R

$U = U_1 \otimes I$
$U P U^{-1} = P$

$P = I \otimes \overline{P}$ \Rightarrow $U = \text{id}_P \times \text{phase}$

Support of U is $R_1 U R_2 (U \overline{U})$

$U = U_1 \otimes \overline{U}_2 \otimes I$
$P = \text{any logical Pauli, unsupported on } R$

$U = U_1 \otimes I \quad UPU^{-1} = P$

$P = I_1 \otimes P \quad \Longrightarrow \quad U = \text{Id}_q \times \text{phase}$

\underline{Support of } U \text{ is } R_1UR_z(\tilde{U} \tilde{N})$

$U = U_1 \otimes U_z \otimes I \quad P \text{ cleaned on } R_z$

$P = P_1 \otimes I_z \otimes P$
$U E U^{-1} P^{-1} = \text{logical}$

and supported on R.

$= id x \text{phase}$

$U E U^{-1} = \text{phase } P$

$P^2 = U E U^{-1} = (\text{phase})^2 P^2 = \text{phase } = \pm 1$
\[U P U^{-1} = \text{logical} \quad \text{and supported on } R, \]

\[= 1_d \times \text{phase} = \]

\[U P U^{-1} = \text{phase } P \]

\[P^2 = U P U^{-1} = (\text{phase })^2 P^2 \quad \Rightarrow \quad \text{phase} = \pm 1 \]

\[\Rightarrow \quad 1 \text{ is in } \mathbb{Q} \]
\[U_{\text{logical}} = U_{i} \otimes U_{\text{Pauli}} \cdot T \]

\[P_{\text{cleaniton}} \otimes R_{3} \]

\[UPU^{-1} = \text{local, supported} \]

\[UPU^{-1} = \text{phase} \times \text{Pauli} \]
logical

\[U \text{ clean on } \mathbb{R}^3 \]

\[UPU^{-1} \text{ supported on } \mathbb{R}^{1,1} \]

\[UPU^{-1} = \text{ phase } \times \text{ Pauli } \Rightarrow \text{ is logical} \]
\[U \cdot C \rightarrow C' \]

\[Q \text{ Reed-Muller codes} \]

\[[2^m-1,1,37] \]

\[[7,1,37] \]

\[\bar{z} = z \otimes 7 \]

\[\bar{x} = x \otimes 7 \]

\[\text{XXXII} \]

\[\text{IIIxxx} \]
$$U^\dagger U' = \text{logical and supported on } R \dagger$$

$$= \text{id} \otimes \text{phase} = 1 \otimes \text{phase}$$

$$U^\dagger U' = \text{phase } \rho = (\text{phase})^2 \rho^2 \longrightarrow \text{phase} = \pm 1$$

$$\Rightarrow \text{is in } \theta$$
\[2^{m-1} + 2^{m-2} + 2^{m-3} + \ldots + 1 = m \text{ correctable sets} \]
\[2^{m-1} + 2^{m-2} + 2^{m-3} + \cdots + 1 = m \text{ correctable sets} \]

\[\mathbf{\Theta}_{m-1} \]
\[\text{diag} \left(1, e^{\frac{\pi i}{7m-2}} \right) \in P_{m-1} \]

\[[215, 1, 37] \]
\[2^m \times \left(\frac{\pi}{2m-2} \right) e^{\frac{\pi}{2m-2}} \in \mathbb{P}_{m-1} \]

\[\text{Subsystem codes (Pastawski-Yoshida)} \]

\[[15, 1, 37] \]
Logical ops:

- "bare": logical only
- "dressed": act on logical + gauge
Logical Ops:

- "bare" logical only
- "dressed" act on logical + gauge

Cleaning Lemma

bare'' logical only

dressed': act on logical + gauge

Cleaning Lemma

bare(R) + dressed
Logical ops:

- bare" logical only
- dressed" act on logical + gauge

Cleaning Lemma: \[|\text{bare}(R) + |\text{dressed}(R')| = 2K \]
\(r \text{ correctable} \implies \text{laressed } (R) = 0 \implies \lambda (R^\dagger) = 2 \text{ (save) } \)
\[\text{correctable} \Rightarrow \text{laressed } l \Rightarrow l(1R^9) = 0 \Rightarrow l \text{ cleanable (laorealgal) are can be cleaned on } R \text{ with stats} \]
\[\text{rectangle} \Rightarrow \text{dressed}(R) = 0 \Rightarrow \text{dressed}(R^\mathbb{C}) = 2 \mathbb{K} \]

- davi cLEANABLE (dale logical)
- \(|R| < d\)
- \(\text{dressed} (R) = 0 \Rightarrow \text{dressed} (R^\mathbb{C}) = 2 \mathbb{K}\)
- \(\text{dressed cleanable} \) (can clean on \(R\) with gauge generator)
Coded block: \(U R_i U R \) \(i = 1 \)

Dressed logical \(U \) supported on

\(R_1 \) is correctable

\(R_2 \); \(P_m \) are dressed cleanable
Coded block = \(UR_i UR \)

\(R_1 \) is correctable

\(R_2, P_m \) are dressed cleanable

Dressed logical \(U \) supported on

\(= U_{\log} \oplus U_{\text{gauge}} \)

\(\Rightarrow U_{\log} \in P_{m-1} \)
supported on correctable \(R \)

\[\Rightarrow U = \ldots \]
U supported on correctable \(R \)

\[\Rightarrow \quad U = \text{phase \times \text{dly}} \]

\(R \), dressed cleanable

\[U = U_1 \otimes I = U_{\text{log}} \otimes U_{\text{gauge}} \]

Dressed Pauli logical op

\[P = I \times \overline{P} \]

\[\overline{U} \cdot U = \overline{P} = U_{\text{log}} \otimes U_{\text{log}} \otimes U_{\text{gauge}} \otimes U_{\text{gauge}} \]
Union Lemma:

Dimensions

Geom local stab generators
Local subsystem code

Gauge generators are geom local

Union of separated dressed cleanable sets is dressed cleanable
\(UPU'P' \)

gate has range \(r \)
depth \(h \)
supported
\(\delta \)
\(\eta \)
\(rh \)
D \dim \quad \text{Fattened triangulation}

\[\Rightarrow \quad D+1 \]

\text{corrected regions}

\text{(stabilisation)}

D+1 \text{dressed cleanable sub-system} \quad \mathcal{P}_D^{D+1}
gate has range \(r \)
depth \(h \)
supported
\[\delta_y \cdot rh \]

1 core cleanable + 0 dressed cleanable \(\Rightarrow P_y \)
Distance $\approx \text{dist}(0, E) \cdot \log n$

$[1, 1, 5, 1, 3, 1]$

Subsystem codes

K-local + g g
Distance $\approx \text{const}(0, \infty)$ log n

[$[15, 1, 3]$]

Subsystem codes (Pastawski-Hayden)

K logical + g gauge
Distance \geq \exp (D, \Sigma) \log n

Subsystem codes (Pastaw)
K+ logical + g-gauge
Distance $\geq \text{antist}(0, \varepsilon) \log\left[\frac{1}{15,1,3}\right]$

Subsystem codes (Pastaw)

K logical + g gauge

[Diagram of quantum circuit or code]

Twisted triangulation