Title: TBA

Date: Aug 20, 2015 04:00 PM

URL: http://pirsa.org/15080077

Abstract: TBA
AdS/CFT, Quantum Gravity & Entanglement Workshop

Montreal, Sept 14-16, 2015
Register at http://www.crm.umontreal.ca/2015/Gravity15/
Contact: A. Maloney (maloney@physics.mcgill.ca)
Entanglement holography

Michal P. Heller
Perimeter Institute for Theoretical Physics, Canada

based on
1508.xxxxx with Jan de Boer, Rob Myers and Yasha Neiman
Holography

AdS/CFT provides the best understood example of the holographic principle.

QG theory in (d+1)-dim = QM theory in d-dim

Within AdS/CFT, emergent direction z is related to energy scale in a dual QFT:

$$ds^2 = \frac{1}{z^2} dz^2 + \frac{1}{z^2} \eta_{\mu\nu} dx^\mu dx^\nu \text{ with } (z, x^\mu) \rightarrow (\lambda z, \lambda x^\mu)$$

Bulk: Wilsonian RG-flow with z playing the role of (the energy scale)$^{-1}$.

The coarse-graining direction is spacelike.
MERA is an example of real-space RG-flow

MERA has “Lorentzian causal structure”. The coarse-graining direction is “timelike”.

Bény 1110.4872; Evenbly et al. 1307.0831, Czech et al. 1505.05515
Integral geometry

One can introduce a partial order on the set of intervals for which we calculate EE

This motivates introducing the light-cone coordinates $u = \theta - \alpha$ and $v = \theta + \alpha$ and considering space with the volume form $\omega = \partial_u \partial_v S \, du \wedge dv$

SSA guarantees $\partial_u \partial_v S \geq 0$. For the vacuum we obtain

$$\omega = \frac{c}{12 \sin^2(\alpha)} \, du \wedge dv$$

Unique conformally-invariant metric compatible with these is

$$ds^2 = \frac{c}{12 \sin^2(\alpha)} \, du \, dv = \frac{c}{12 \sin^2(\alpha)} \left(-d\alpha^2 + d\theta^2 \right)$$

de Sitter_2
Question behind this work

Is there a setup in which:

1) scale appears as an emergent time-like direction
 and

2) local DOFs in the emergent spacetime can be identified?
Entanglement first law

Consider small perturbation of some reference density matrix $\rho = \rho_0 + \delta \rho$

The change in the entropy is equal to the change in \langlethe modular Hamiltonian\rangle

$$\delta S = -\text{tr} (\rho \log \rho) - S_0 = \delta \langle H_{mod} \rangle$$

In general, we expect $H_{mod} \equiv \log \rho_0$ to be nonlocal, but for $\rho_0 = \text{tr}_V |0\rangle \langle 0|$:

$$H_{mod} = c' + 2\pi \int_{|\vec{x} - \vec{x}'|^2 \leq R^2} d^{d-1}x' \frac{R^2 - |\vec{x} - \vec{x}'|^2}{2R} T_{tt}(x')$$

$t = 0$ of $\mathbb{R}^{1,d}$

$V = B^{d-1}$

$|0\rangle$ is the vacuum$_{\text{CFTd}}$

Casini, Huerta & Myers 1102.0440
Propagation on de Sitter

As a result, the change in the entanglement entropy for small perturbations of \(|0\rangle \) is

\[
\delta S_B = 2\pi \int_{|\overline{x} - \overline{\overline{x}}'|^2 \leq R^2} d^{d-1}x' \frac{R^2 - |\overline{x} - \overline{\overline{x}}'|^2}{2R} \langle T_{tt}(x') \rangle
\]

see e.g. Xiao 1402.7080

This is the bulk-to-boundary propagator in \(\text{dS}_d \): \[
 ds^2 = -\frac{L^2}{R^2} dR^2 + \frac{L^2}{R^2} d\overline{x}^2
\]

This implies that \(\delta S \) is a local field in \(\text{dS}_d \) and obeys the Klein-Gordon equation:

\[
\nabla_a \nabla^a |_{\text{dS}_d} \delta S_B - m^2 \delta S_B = 0 \quad \text{with} \quad m^2 L^2 = -d
\]

Note that the scale \(R \) appears here as an emergent time-like coordinate.
How does it work?

$R = 0$ corresponds to one of the timelike boundaries in dS_d (say to the future one).

$$\delta S \xrightarrow{R \to 0} F(x)/R + f(x) R^d + \ldots$$

with

$$F(x) = 0 \quad \text{and} \quad f(x) = \frac{\pi^{\frac{d+1}{2}}}{\Gamma\left(\frac{d+3}{2}\right)} \langle T_{tt}(x) \rangle$$

Explicit example in CFT$_2$: $\delta \rho = \eta (|0\rangle\langle \phi | + |\phi \rangle\langle 0|)$ with $|\phi \rangle = T_{tt}(t_0 + i \tau, x_0)|0\rangle$
Comments

\[\nabla_a \nabla^a \big|_{dS_d} \delta S_B - m^2 \delta S_B = 0 \text{ in any CFT}_d \] (large c / strong coupling not needed)

It surfaced before in the studies of HEE & the Einstein equations

Takayanagi et al. 1304.7100 and 1308.3792

It relies only on the applicability of the first law for all values of \(R \)

As it is now, it concerns constant time slice configurations in CFT\(_d\)

\[\nabla_a \nabla^a \big|_{dS_d} \delta S_B - m^2 \delta S_B = 0 \] is covariant and applies in any coords in dS\(_d\)

Our analysis, as it is now, does not fix the curvature scale of dS\(_d\)
Comments

\[\nabla_a \nabla^a \bigg|_{dS_d} \delta S_B - m^2 \delta S_B = 0 \text{ in any CFT}_d \] (large c / strong coupling not needed)

It surfaced before in the studies of HEE & the Einstein equations

Takayanagi et al. 1304.7100 and 1308.3792

It relies only on the applicability of the first law for all values of \(R \)

As it is now, it concerns constant time slice configurations in CFT\(_d\)

\[\nabla_a \nabla^a \bigg|_{dS_d} \delta S_B - m^2 \delta S_B = 0 \text{ is covariant and applies in any coords in } dS_d \]

Our analysis, as it is now, does not fix the curvature scale of dS\(_d\)
1-to-1 mapping between spheres and dS_d

$$\delta S_B = 2\pi \int_{|\vec{x}'|^2 \leq R^2} d^{d-1}x' \frac{R^2 - |\vec{x} - \vec{x}'|^2}{2R} \langle T_{tt}(x') \rangle$$

sphere B in \mathbb{R}^{d-1} maps to a point in dS_d:

Time slice $\iff I^+ \equiv \{ x \mid R = 0 \}$

Causal relations between points in dS_d \iff partial order between B's on $t=0$:

- timelike
- null
- spacelike

generalizes Czech et al. 1505.05515
1-to-1 mapping between spheres and dS_d

$$\delta S_B = 2\pi \int_{|\bar{x}|^2 \leq R^2} d^{d-1}x' \frac{R^2 - |\bar{x} - \bar{x}'|^2}{2R} \langle T_{tt} \rangle(x')$$

sphere B in \mathbb{R}^{d-1} maps to a point in dS_d:

Time slice $\iff I^+ \equiv \{x | R = 0\}$

Causal relations between points in dS_d \iff partial order between B's on $t=0$:

9/14 generalizes Czech et al. 1505.05515
Elliptic dS_d

If $\delta S_B = \delta S_B$, the field propagates on elliptic dS_d: $\delta \rho = \eta (|0\rangle\langle\phi| + |\phi\rangle\langle0|)$

If $\delta S_B \neq \delta S_B$, this is not the case, e.g. $\delta \rho = ge^{-\beta E_1}|E_1\rangle\langle E_1|$

Herzog [407.1358]
More dynamical scalar fields on dS_d

\[H_{mod} = c' + \int_B dB^\mu J^{(2)}_\mu \text{ with } J^{(2)}_\mu \equiv T_{\mu \nu} K^\nu \]

\[Q^{(s)} = \int_B dB^\mu J^{(s)}_\mu \text{ with } J^{(s)}_\mu = T_{\mu \nu_1 \ldots \nu_{s-1}} K^{\nu_1} \ldots K^{\nu_{s-1}} \]

see Belin et al. 1310.4180 for $s=1$

see Hijano & Kraus 1406.1804 for $d=2$ & $s>2$

\[\delta S^{(s)}_B = (2\pi)^{s-1} \int_B d^{d-1}x' \left(\frac{R^2 - |\vec{x} - \vec{x}'|^2}{2R} \right)^{s-1} T_{tt\ldots t}(x') \]

It is clear now that all $\delta S^{(s)}_B$ will be local scalar fields in dS_d and will obey

\[\nabla_a \nabla^a |_{dS_d} \delta S^{(s)}_B - m^2 \delta S^{(s)}_B = 0 \quad \text{with} \quad m^2 L^2 = -(s-1)(d+s-2) \]
Summary

Entanglement in excited states is organized in a Lorentzian holographic way:

\[\nabla_a \nabla^a \big|_{dS_d} \delta S_B - m^2 \delta S_B = 0 \]

with \(m^2 L_{dS_d}^2 = -d \)

This statement applies to any CFT in any \(d \) provided the first law holds.

The statement concerns constant time slices in a CFT.

For theories with conserved charges: one dynamical field in \(dS_d \) for each charge.
Some open problems

Can we describe full CFT in terms of local fields interacting in dS_d (novel dS/CFT)?

Geometry encapsulating time evolution between 2 constant time slices in a CFT?

Does dS_d play the role of the kinematic space / what fixes L_{dS_d}?

Link with MERA / cMERA?

Does the emergent local Lorentzian propagation persists if conformal symmetry?