Title: Realism Versus Quantum Mechanics: Implications of Recent Experiments

Date: Jun 20, 2016 04:45 PM

URL: http://pirsa.org/16060041

Abstract:
REALISM VERSUS QUANTUM MECHANICS:

IMPLICATIONS OF RECENT EXPERIMENTS

A. J. Leggett
Department of Physics
University of Illinois at Urbana-Champaign
1. What do we mean by “realism” in physics?

2. Local realism: The EPR-Bell setup

3. Three recent EPR-Bell experiments*

4. Macrorealism: The MQC Setup

5. A recent MQC experiment†

* B. Hensen et al., Nature 526, 682 (2015) ("Delft")

What do we/can we mean by “realism”? Philosophers discuss “reality” of (e.g.)
the human mind
the number 5
moral facts
atoms (electrons, photons...)

but, difficult to think of input from physics

So: in what sense can physics as such say something about “realism”?

(My) proposed definition:

At any given time, the world has a definite value of any property which may be measured on it (irrespective of whether that property actually is measured)

To make this proposition (possibly) experimentally testable, need to extend it to finite “parts” of the world.

Irrespective of the universal validity (or not) of QM, what can we infer about this proposition
directly from experiment?

quantum mechanics
What do we/can we mean by “realism”?
Philosophers discuss “reality” of (e.g.)
the human mind
the number 5
moral facts
atoms (electrons, photons...)
but, difficult to think of input from physics

So: in what sense can physics as such say something about “realism”?

(My) proposed definition:

At any given time, the world has a definite value of any property which may be measured on it (irrespective of whether that property actually is measured)

To make this proposition (possibly) experimentally testable, need to extend it to finite “parts” of the world. Irrespective of the universal validity (or not) of QM, what can we infer about this proposition

directly from experiment?
quantum mechanics
THE SIMPLEST CASE: A TWO STATE SYSTEM

(Microscopic) example: photon polarization

Single (heralded) photon

detector

Polarizer with transmission axis \(\parallel \) to \(\textbf{a} \)

Macroscopic events

"Question" posed to photon:

Are you polarized along \(\textbf{a} \)?

Experimental fact:

for each photon, either counter \(\text{Y} \) clicks (and counter \(\text{N} \) does not) or \(\text{N} \) clicks (and \(\text{Y} \) does not).

natural "paraphrase":

when asked, each photon answers either "yes" (\(A = +1 \))
or "no" (\(A = -1 \))

But: what if it is not asked?

(no measuring device...)

Single (heralded) photon
MACROSCOPIC COUNTERFACTUAL DEFINITENESS (MCFD)
(Stapp, Peres...)

Suppose a given photon is directed “elsewhere”. What does it mean to ask “does it have a definite value of A?”? A possible quasi-operational definition:

Suppose photon had been switched into measuring device:
Then:
Proposition I (truisms?): It is a fact that either counter Y would have clicked (A = +1) or counter N would have clicked (A = -1)

Proposition II (MCFD): Either it is a fact that counter Y would have clicked (i.e. it is a fact that A = +1) or it is a fact that counter N would have clicked (A = -1)

DO COUNTERFACTUAL STATEMENTS HAVE TRUTH VALUES?
(common sense, legal system... assume so!)
THE EPR-BELL EXPERIMENTS (idealized)

![Diagram of EPR-Bell Experiments]

CHSH inequality: all objective local theories (OLT's) satisfy the constraints

\[
(AB) + (A'B') + (AB') - (A'B') \leq 2 \quad (*)
\]

(*) is violated (by predictions of QM, and) (prima facie) by experimental data.

Note: for purposes of refuting local realism, use of "source" is inessential!
THE EPR-BELL EXPERIMENTS (idealized)

CHSH inequality: all objective local theories (OLT’s) satisfy the constraints
\[\langle AB \rangle + \langle A'B' \rangle + \langle AB' \rangle - \langle A'B \rangle \leq 2 \] (*)

(*) is violated (by predictions of QM, and) (prima facie) by experimental data.

Note: for purposes of refuting local realism, use of “source” is inessential!
The most obvious “loopholes” in EPR-Bell experiments (pre- 11/15)

(1) "locality": event of (e.g.) switching at C_1 not spacelike separated from detection in M_2

(2) “freedom of choice”: switching at $C_{1,2}$ may not be truly “random”

(3) "detection": if counters not 100% efficient, detected particles may not be representative sample of whole.

Until Nov. 2015, many experiments had blocked 1 or 2 loopholes, but none had blocked all 3 simultaneously.

Why?

Blocking of (1) requires spacelike separation of switching at C_1 and detection at M_2
and blocking of (2) requires (inter alia) spacelike separation of switching at C_1
and emission at S (or equivalent)

[Blue diagram]

- easy for photons, difficult for e.g. atoms
- easy for atoms, etc., difficult for photons

Blocking of (3) requires detector efficiency >82.8% for CHSH (or 67% for Eberhard, see below)

To exclude giant “conspiracy of Nature” need to block all 3 loopholes simultaneously! (“holy grail” of experimental quantum optics)
The most obvious "loopholes" in EPR-Bell experiments (pre-11/15)

(1) "locality": event of (e.g.) switching at C_1 not spacelike separated from detection in M_2

(2) "freedom of choice": switching at $C_{1,2}$ may not be truly "random"

(3) "detection": if counters not 100% efficient, detected particles may not be representative sample of whole.

Until Nov. 2015, many experiments had blocked 1 or 2 loopholes, but none had blocked all 3 simultaneously.

Why?

Blocking of (1) requires spacelike separation of switching at C_1 and detection at M_2
and blocking of (2) requires (inter alia) spacelike separation of switching at C_1
and emission at S (or equivalent)

easy for photons, difficult for e.g. atoms

Blocking of (3) requires detector efficiency >82.8% for CHSH (or 67% for Eberhard, see below)

easy for atoms, etc., difficult for photons

To exclude giant "conspiracy of Nature" need to block all 3 loopholes simultaneously! ("holy grail" of experimental quantum optics)
A useful extension of CHSH inequality (Eberhard):

![Diagram](image)

but now:

![Diagram](image)

(etc.)

(set in direction \(a \))

(so don’t mind whether nondetected particles had polarization \(\perp a \), or were simply not detected because of inefficiency of counter).

Eberhard inequality:

\[
J \equiv p(+-|ab|) - p(+0|ab') - p(O+|a'b) - p(++|a'b') \leq 0
\]

where, e.g.,

\(p(+0|ab) \equiv \) probability that with particles switched into detectors A, B, detector A fires and B does not.

Inequality is valid independently of detection efficiency \(\eta \), but predictions of QM violate it only for \(\eta > 67\% \).
EPR-Bell Experiments of Nov – Dec. 2015

<table>
<thead>
<tr>
<th>First author affiliation</th>
<th>System</th>
<th>$C_1 - M_2$ distance</th>
<th>Inequality tested</th>
<th>Value of $(K - 2)/I$</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delft</td>
<td>electron spins</td>
<td>1.3 km</td>
<td>CHSH</td>
<td>0.42</td>
<td>0.019/0.039</td>
</tr>
<tr>
<td>NIST</td>
<td>photon polarization</td>
<td>185m</td>
<td>Eberhard</td>
<td>2×10^{-7}</td>
<td>$<2.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>IQOQI</td>
<td>photon polarization</td>
<td>58m</td>
<td>Eberhard</td>
<td>7×10^{-7}</td>
<td>$<10^{-30}$[sic!]</td>
</tr>
</tbody>
</table>

=> local realism is dead?

What are the outstanding loopholes?

(1) Superdeterminism probably untestable
(2) Retrocausality probably untestable
(3) Collapse locality ?

at what point in the “measurement” process was a definite outcome realized?

Can experiment (of a different kind) say anything about this?
EPR-Bell Experiments of Nov – Dec. 2015

<table>
<thead>
<tr>
<th>First author</th>
<th>System</th>
<th>$C_1 - M_2$ distance</th>
<th>Inequality tested</th>
<th>Value of $(K - 2)/I$</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delft</td>
<td>electron spins</td>
<td>1.3 km</td>
<td>CHSH</td>
<td>0.42</td>
<td>0.019/0.039</td>
</tr>
<tr>
<td>NIST</td>
<td>photon polarization</td>
<td>185m</td>
<td>Eberhard</td>
<td>2×10^{-7}</td>
<td><2.3 x 10^{-3}</td>
</tr>
<tr>
<td>IQOQI</td>
<td>photon polarization</td>
<td>58m</td>
<td>Eberhard</td>
<td>7×10^{-7}</td>
<td><10^{-30}[sic!]</td>
</tr>
</tbody>
</table>

local realism is dead?

What are the outstanding loopholes?

1. Superdeterminism is probably untestable
2. Retrocausality is probably untestable
3. Collapse locality is ?

At what point in the “measurement” process was a definite outcome realized?

Can experiment (of a different kind) say anything about this?
MACROSCOPIC QUANTUM COHERENCE (MQC)

"Q = +1"

"Q = -1"

\[+ \quad + \quad + \]

\[- \quad - \quad - \]

\[t_i \quad t_{int} \quad t_f \]

macroscopically distinct states

Example: “flux qubit”:

Supercond. ring

Josephson junction

"Q = +1" "Q = -1"

Existing experiments: if raw data interpreted in QM terms, state at \(t_{int} \) is quantum superposition (not mixture!) of states \(+ \) and \(- \).

\[\uparrow \text{: how “macroscopically” distinct?} \]

(cf: arXiv: 1603.03992)
Analog of CHSH theorem for MQC:
Any macrorealistic theory satisfies constraint

\[-2 \leq \langle Q(t_1)Q(t_2) \rangle + \langle Q(t_2)Q(t_3) \rangle + \langle Q(t_3)Q(t_4) \rangle - \langle Q(t_4)Q(t_1) \rangle \leq 2\]

or setting \(t_4 = t_1\),

\[\langle Q(t_1)Q(t_2) \rangle + \langle Q(t_2)Q(t_3) \rangle + \langle Q(t_3)Q(t_4) \rangle \geq -1\]

which is violated (for appropriate choices of the \(t_j\)) by the QM predictions for an “ideal” 2-state system

Definition of “macrorealistic” theory: conjunction of
1) macrorealism “per se” (\(Q(t) = +1\) or \(-1\) for all \(t\))
2) absence of retrocausality
3) noninvasive measurability (NIM)

\[\text{NIM:}\]

\[\text{If } Q = +1, \text{ throw away}\]
\[\text{If } Q = -1, \text{ keep}\]

In this case, unnatural to assert 1) while denying 3).
NIM cannot be explicitly tested, but can make “plausible” by ancillary experiment to test whether, when \(Q(t)\) is known to be (e.g.) +1, a putatively noninvasive measurement does or does not affect subsequent statistics. But measurements must be projective (“von Neumann”).

Existing experiments use “weak-measurement” techniques (and states are not macroscopically distinct)
NTT experiment

Rather than measuring 2-time correlations, check directly how far measurement (not necessarily noninvasive) at \(t_2 \) affects \(\langle Q(t_2) \rangle = \langle Q_3 \rangle \) for the different macroscopically distinct states and for their (putative) quantum superposition.

Define for any state \(\sigma \) at \(t=t_2^- \),

\[
d_{\sigma} = \langle Q_3 \rangle_M - \langle Q_3 \rangle_O
\]

\(M \equiv \) measurement with uninspected outcome made at \(t_2 \)
\(O \equiv \) measurement not made at \(t_2 \)

Ancillary test: \(\sigma = \bigoplus \)

\[\begin{array}{cccc}
\bigoplus & \rightarrow & \bigoplus & \rightarrow \bigoplus \\
\uparrow & & & \rightarrow \\
M/O & & & \rightarrow \\
\end{array}\]

\(d_+ = \langle Q_3 \rangle_M - \langle Q_3 \rangle_O \)

\(\sigma = \bigotimes \)

\[\begin{array}{cccc}
\bigotimes & \rightarrow & \bigotimes & \rightarrow \bigoplus \\
\uparrow & & & \rightarrow \\
M/O & & & \rightarrow \\
\end{array}\]

\(d_- = \langle Q_3 \rangle_M - \langle Q_3 \rangle_O \)
Main experiment:

\[d_p = \langle Q_3 \rangle_M - \langle Q_3 \rangle_0 \]

\[\uparrow \]

M/0

Df: \(\delta = d_p - \min(d_+, d_-) \)

MR: \(\delta > 0 \)

Expt: \(\delta = -0.063 \)

violates MR prediction by \(>84 \) standard deviations!
CONCLUSION

Not just at the level of photons/electrons, but even at the level of superconducting qubits,

“unperformed experiments have no results”

or more generally

counterfactual statements have no truth-values.

(are the philosophers surprised?)