Title: A Bouncing Universe approach to Fine Tuning

Date: Jun 27, 2017 02:45 PM

URL: http://pirsa.org/17060103

Abstract:
A Cyclic Approach to Fine Tuning

With Sam Cormack, Marcelo Gleiser, David Lowe, Rob Sims
The String Landscape

• Consider Heterotic String Theory

\[S = \frac{1}{2\alpha'^{4}} \int d^{10}x \sqrt{-g_{10}} \left(\mathcal{R}_{10} - \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi - \frac{1}{12} e^{-\phi} \left(H_{ABC} - \frac{\alpha'}{16} e^{\phi} \bar{\chi}_{10} \Gamma_{ABC} \chi_{10} \right)^{2} \right) \]

\[-\frac{\alpha'}{4} e^{-\frac{\phi}{2}} \text{tr}(F_{AB} F^{AB}) - \alpha' \text{tr}(\bar{\chi}_{10} \Gamma^{A} D_{A} \chi_{10}) \]

\[ds^{2}_{10} = e^{-6\sigma} ds^{2}_{4} + e^{2\sigma} g_{mn} dy^{m} dy^{n} \quad \quad \varphi = \frac{\phi}{2} - 6\sigma \]

\[g_{YM}^{2} \equiv e^{\sigma} \]

\[S_{4d} = S_{\text{gravity}} + S_{\text{gauge}} + S_{\text{CY}} \]

\[S_{\text{gravity}} = \frac{2}{\alpha'} \int d^{4}x \sqrt{-g_{4}} \left(\mathcal{R}_{4} - \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{3}{2} \partial_{\mu} \rho \partial^{\mu} \rho \right) \]

\[S_{\text{gauge}} = \int d^{4}x \sqrt{-g_{4}} \left(-\frac{1}{4g_{YM}^{2}} \text{tr}(F_{\mu\nu} F^{\mu\nu}) - \frac{2}{g_{YM}^{2}} \text{tr}(\bar{\lambda} \Gamma^{\mu} D_{\mu} \lambda) \right) \]
Inflationary Multiverse

String Landscape + Eternal Inflation

See Brandenberger for critique: CQG 2013
Cyclic Cosmologies

Addresses a host of cosmological problems (including CC problem)

Steinhardt, Truck (Science '02)
Cyclic Bounces

Promote all gauge sector couplings to a moduli field.

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \left[\epsilon_{\mu \nu} \partial^\mu \psi \partial^\nu \psi + 2V(\psi) \right] + S_{gf} \right] \]

with

\[S_{gf} = -\frac{1}{4} \sum_i \frac{1}{(g_{YM}^i)^2} F_{\mu \nu}^i F^{\mu \nu i}, \]

\[V(\psi) = -\Lambda^4 (1 + \cos(\psi / f)) \]
Cyclic Bounces

Promote all gauge sector couplings to a moduli field.

\[S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \left[\epsilon_{\mu\nu} \partial_\mu \psi \partial^\mu \psi + 2V(\psi) \right] + S_{gf} \right] \]

with

\[S_{gf} = \frac{1}{4} \sum_i \frac{1}{(g_{YM}^i)^2} F_{\mu\nu}^i F^{\mu\nu i}, \]

\[V(\psi) = -\Lambda^4 (1 + \cos(\psi / f)) \]
E.O.M

\[\Psi'' = -2\mathcal{H}\Psi' + \frac{a^2 \beta}{f} \sin(\Psi/f); \]
\[a'' = \frac{a'^2}{a} - \frac{1}{3a} + \frac{a\Psi'^2}{3} - \frac{a^3 \beta}{3} (1 + \cos(\Psi/f)) \]
\[\mathcal{H}^2 = -\frac{\Psi'^2}{6} - \frac{a^2 \beta}{3} \left(1 + \cos(\Psi/f)\right) + \frac{1}{3a^3} - \frac{\kappa M_p^2}{\rho_{\nu_0}} \]

when field is minimized we get exact solution:

\[\Psi' = \frac{\sqrt{\lambda}}{a^2}; \]
\[a^2(\eta) = \frac{1}{6} \left[1 + \sqrt{1 - 6\lambda \sin(\eta + \eta_0)} \right] \]
\[\psi'' = -2\mathcal{H}\psi' + \frac{a^2 \beta}{f} \sin(\psi/\bar{f}); \]

\[a'' = \frac{a'}{a} - \frac{1}{3a} + \frac{a\psi'}{3} - \frac{a^2 \beta}{3} (1 + \cos(\psi/\bar{f})) \]

\[\mathcal{H}^2 = \frac{\psi'^2}{6} - \frac{a^2 \beta}{3} \left(1 + \cos(\psi/\bar{f})\right) + \frac{1}{3a^2} - \frac{\kappa M_\text{P}^2}{\rho_\text{vo}} \]

when field is minimized we get exact solution:

\[\psi' = \frac{\sqrt{\lambda}}{a^2}; \]

\[a^2(\eta) = \frac{1}{6} \left[1 + \sqrt{1 - 6\lambda \sin(\eta + \eta_0)} \right] \]
Evolution of Coupling Constants

1. Ψ remains approximately constant during the expansion and contraction phases.
2. Ψ changes relatively quickly during the bounce phase.
3. The change in Ψ can change sign from bounce to bounce in a pseudo-random way.
Behavior of Coupling

\[\Delta_i = \Psi_{i+1} - \Psi_i, \]

and define the autocorrelation of the differences as

\[R_k = \frac{\sum_{i=1}^{N-k} \Delta_i \Delta_{i+k}}{\sum_{i=1}^{N} \Delta_i^2}. \]
Observational Consistency

$$\frac{\Delta g_{YM}}{g_{YM}} \sim \Delta \psi = \frac{\Delta \psi}{M_p}$$

Since the parameter f sets the variation of ψ away from the bounce, the fractional variation of g_{YM} will be of the order f/M_p.

Observations by Webb et al. suggest fine structure may have varied by

$$\frac{\Delta \alpha}{\alpha} = -0.72 \pm 0.18 \times 10^{-5}$$

Constrains coupling to be

$$f/M_p \sim 10^{-5}$$
Behavior of Coupling

\[\Delta_i = \Psi_{i+1} - \Psi_i, \]

and define the autocorrelation of the differences as

\[R_k = \frac{\sum_{i=1}^{N-k} \Delta_i \Delta_{i+k}}{\sum_{i=1}^{N} \Delta_i^2}. \]
Stability Analysis

(a) Phase portrait showing limit cycle for $f = 10^{-2} M_p$

(b) Phase portrait showing limit cycle for $f = 10^{-3} M_p$

(c) Phase portrait for ghost fluid

(d) Phase portrait for ghost fluid
Peturbations

\[\psi \rightarrow \psi(\eta) + \chi(\eta, \mathbf{x}) \]

\[ds^2 = a^2(\eta) \left(- (1 + 2\phi) d\eta^2 + (1 - 2\theta) \gamma_{ij} dx^i dx^j \right) \]

\[\nabla^2 \phi - 3 \mathcal{H} \phi' - 3 \phi (\mathcal{H}^2 - \mathcal{K}) = \frac{1}{2M_p^2} \left(\phi (\psi')^2 - \psi' \chi' + a^2 \frac{\partial V}{\partial \psi} \chi \right) \]

\[\mathcal{H} \phi + \phi' = -\frac{1}{2M_p^2} \psi' \chi \]

\[\phi'' + 3 \mathcal{H} \phi' + (2 \mathcal{H}' + \mathcal{H}^2 - \mathcal{K}) \phi = \frac{1}{2M_p^2} \left(\phi (\psi')^2 - \psi' \chi' - a^2 \frac{\partial V}{\partial \psi} \chi \right) \]

\[\phi_k'' + 6 \mathcal{H} \phi_k' + (k^2 + 2 \mathcal{H}' + 4 \mathcal{H}^2 - 4 \mathcal{K}) \phi_k = 0. \]

\[\chi_k'' + 2 \mathcal{H} \chi_k' + \left(k^2 + \frac{2}{M_p^2} \psi'^2 \right) \chi_k = -4 \mathcal{H} \psi' \phi_k. \]
note: amplitudes of perts are relative to their initial amplitudes at bounce.
\[k \gtrsim 10\sqrt{\rho_{F0}/M_p} \]

Perts that enter horizon early are stable throughout expansion and contraction

\[k \lesssim 10\sqrt{\rho_{F0}/M_p}. \]

Perts that enter horizon later are unstable throughout expansion and contraction
Quantum Stability

(a) Graviton mediated vacuum decay

(b) Direct coupling vacuum decay

These could be alleviated by Ghost Condensate (Arkani-Hamed et al.)

\[S = \int d^3x dt \left[\frac{1}{2} M^4 \phi^2 - \frac{1}{2} M (\nabla^2 \phi)^2 - \frac{M^4}{2c} \phi(\nabla \phi)^2 + \frac{M^4}{8c^2} (\nabla \phi)^4 + \ldots \right] \]
Conclusion

- Cyclic Bouncing Cosmologies can be useful for addressing fine tuning of gauge couplings of standard model.
- The toy theory presently relies on ghost moduli fields which are randomized during bounce.
- Couplings get stabilized due to Hubble friction.
- Stability analysis showed that system is classically stable.
- Currently investigating issue of quantum stability.
- A more realistic setting may be Ekpyrotic which uses $w > 1$ eos.