Abstract: This talk will be about constraints on any model which reproduces the qubit stabilizer sub-theory. We show that the minimum number of classical bits required to specify the state of an n-qubit system must scale as $\sim n(n-3)/2$ in any model that does not contradict the predictions of the quantum stabilizer sub-theory. The Gottesman-Knill algorithm, which is a strong simulation algorithm is in fact, very close to this bound as it scales at $\sim n(2n+1)$. This is a result of state-independent contextuality which puts a lower bound on the minimum number of states a model requires in order to reproduce the statistics of the qubit stabilizer sub-theory.
Contextuality, PBR and their effect on the simulation of quantum systems

Angela Karanjai,
Joel Wallman, Stephen Bartlett
arXiv.cominsoon
The main result

The minimum number of classical bits required to specify the state of an n-qubit system in any model that reproduces stabilizer statistics is

$$\frac{n}{2} (n - 1)$$
Overview

• Why should you care?

• How is it related to contextuality?

• How did we do it?

• What now?
What does it mean to simulate quantum statistics?

\[
\begin{array}{c}
P \rightarrow M \rightarrow k \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
P_1 & P_2 & \ldots & P_n \\
\hline
M_1 & & & \\
M_2 & & & \\
\vdots & & & \\
M_m & & & \\
\end{array}
\]

\[\Pr(k \mid P, M)\]
Why should one care about simulation of Quantum systems?

Quantum Computation
Foundations of QM
Context

- Stabilizer sub-theory: Fault tolerant quantum computation
- Universal quantum computation: injecting “magic” states into stabilizer circuits

Qudits:
- magic states \leftrightarrow Contextuality
- Non-negative Wigner functions \rightarrow efficient classical sampling

Qubits: simulability
- state-independent contextuality
- Contextuality a computational resource?
- No efficient classical sampling
What we show

Qubits:

• The explicit effect of state-independent contextuality on size of the state-space of model
• Qubit stabilizer sub-theory is efficiently simulatable because the number of quantum states grows nicely
• A sampling algorithm cannot do much better than Gottesman-Knill
n-Qubit Stabilizer sub-theory

• Measurements: n-qubit Pauli Observables

• Preparations: eigenstates of n-qubit Pauli operators

• Transformations: Clifford Unitaries
Ontological Models

- State of the system $\lambda \in \Lambda$
- $\Pr(\lambda|P) = \mu_P(\lambda)$
- $\Pr(k|M, \lambda) = \xi_{k,M}(\lambda)$

Reproduce quantum predictions:

$$
\Pr(k|M, P) = \sum_{\Lambda} \mu_P(\lambda) \xi_{k,M}(\lambda) = Tr(\Pi_k \rho)
$$
Perfectly distinguishable preparation procedures cannot have ontic overlap

$$\text{Supp}(P_\rho) \cap \text{Supp}(P_\sigma) = \emptyset, \quad \text{Tr}(\rho \sigma) = 0$$
Perfectly distinguishable preparation procedures cannot have ontic overlap

\[\text{Supp}(P_\rho) \cap \text{Supp}(P_\sigma) = \emptyset, \quad Tr(\rho \sigma) = 0 \]
Perfectly distinguishable preparation procedures cannot have ontic overlap

\[\text{Supp}(P_\rho) \cap \text{Supp}(P_\sigma) = \emptyset, \quad \text{Tr}(\rho \sigma) = 0 \]
The state of the system can be described after a non-demolition measurement

\[
P \xrightarrow{\lambda} M_1 \xrightarrow{\lambda'} M_2 \rightarrow k'
\]

\[
\rho \rightarrow \rho'
\]

\[
\lambda \in \text{Supp}(P_\rho) \rightarrow \lambda' \in \text{Supp}(P_{\rho'})
\]
Two requirements:

1. Experimentally distinguishable states have disjoint support:
 \[\text{Supp}(P_{\rho_i}) \cap \text{Supp}(P_{\rho_j}) = \emptyset, \quad Tr(\rho_i \rho_j) = 0 \]

2. The state of the system can be described even after a measurement:
 \[\rho \rightarrow \rho' \]
 \[\lambda \in \text{Supp}(\rho) \rightarrow \lambda' \in \text{Supp}(\rho') \]
PBR

\[\bigcap_{PBR} \text{Supp}(\rho_i) = \emptyset \]

Proof:

\[
\begin{align*}
\rho_1 &= \{XI, IX, XX\} & \rho_1' &= \{YY, -ZZ, XX\} \\
\rho_2 &= \{ZI, IZ, ZZ\} & \rho_2' &= \{YY, ZZ, -XX\} \\
\rho_3 &= \{XI, IZ, XZ\} & \rho_3' &= \{YY, XZ, ZX\} \\
\rho_4 &= \{ZI, IX, ZX\} & \rho_4' &= \{YY, XZ, ZX\}
\end{align*}
\]
Contextuuality restricts overlap between states

<table>
<thead>
<tr>
<th></th>
<th>ρ_3</th>
<th>ρ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_1</td>
<td>X_1</td>
<td>X_2</td>
</tr>
<tr>
<td>ρ_2</td>
<td>Z_2</td>
<td>Z_1</td>
</tr>
<tr>
<td></td>
<td>XZ</td>
<td>ZX</td>
</tr>
</tbody>
</table>
Result applies to sets equivalent to PBR set

\[\text{Def : } s = \{ \rho_i \}, h = \{ \sigma_i \}, s \sim h \iff \exists C \text{ s.t. } C^+ \rho_i C = \sigma_i \]

\[\bigcap_{e(PBR)} \text{Supp}(\rho_i) = \emptyset \]

Proof:

\[\rho_1 = \{ XI, IX, XX \} \]
\[\rho_2 = \{ ZI, IZ, ZZ \} \]
\[\rho_3 = \{ XI, IZ, XZ \} \]
\[\rho_4 = \{ ZI, IX, ZX \} \]

\[C^+ \rho_2 C = \rho_2' = \{ -YY, ZZ, XX \} \]
\[C^+ \rho_3 C = \rho_3' = \{ -YY, XZ, ZX \} \]
\[C^+ \rho_4 C = \rho_4' = \{ -YY, -XZ, ZX \} \]
Other PBR like sets with empty overlap

\[e\{\langle ZI,IZ\rangle,\langle XI,IX\rangle,\langle XI,IY\rangle,\langle YI,IZ\rangle\} \]

\[e\{\langle ZI,IZ\rangle,\langle XI,IX\rangle,\langle XI,IY\rangle,\langle YI,IY\rangle\} \]

\[e\{\langle ZI,IZ\rangle,\langle XI,IX\rangle,\langle XI,IY\rangle,\langle XX,ZY\rangle\} \]

All sets can be used to construct proofs of contextuality
Other sets with empty overlap

For a system of 2 qubits,

$$\bigcap_{s} \text{Supp}(\rho_i) = \emptyset, \forall |s| > 5$$

Proof:
One cannot construct any set of states with more than 5 states, such that one of its subsets of 4 is not PBR like.
n-qubits

For a system of n qubits,

\[\bigcap_{s} \text{Supp}(\rho_i) = \emptyset, \forall \mid s \mid > 3^{n-2}5 \]

Proof: On the board (If I have time)
n-qubits

$$\bigcap_{s} Supp(\rho_i) = \emptyset, \forall |s| > 3^{n-25}$$

This implies that any ontic state can be in support of at most 3^{n-25} stabilizer states (preparation procedures corresponding to 3^{n-25} stabilizer states).

Min no. ontic states required = (no.of stabilizer states) / (max no. of states the ontic state can be in the supp of)

$$\min |\Lambda| = \frac{|\text{stab}|}{\max |s|}$$
n-qubits

\[\min |\Lambda| \approx 2^{\frac{n^2}{2} - \frac{1}{2}n} \]

Minimum number of classical bits required to specify ontic state:

\[\approx \frac{1}{2} n(n - 1) \]

Gottesman-Knill simulation:

\[n(2n + 1) \]
Answers to questions about contextuality and qubit stabilizers

Q: What is the effect of the presence of contextuality in the qubit sub-theory on simulation?
A: No model can do much better than Gottesman-Knill. The minimum information required for any model is asymptotically \(\sim n^2 \).

Q: How is it different from the qudit sub-theory?
A: The absence of contextuality allows a sampling algorithm to do better than Gottesman-Knill. Wigner function \(\sim n \).
Contextuality: an explicit link to classical simulation

• Can this approach be applied to other sub-theories?
• Can we develop a measure of contextuality that has a direct link to simulability?
Contextuality: an explicit link to classical simulation

Definition 3.1.1 A non-contextual value assignment for a set of observables \(O = \{O_i| i = 1, \ldots, n\} \) is a function \(\nu: O \to \mathbb{R} \) such that \(\nu(O_i) \) is an eigenvalue of the Hermitian operator describing \(O_j \) and \(\nu(O_iO_j) = \nu(O_i)\nu(O_j) \) if \(O_i \) and \(O_j \) commute.

Kochen-Specker proof ➔ No non-contextual value assignment possible
Contextuality: an explicit link to classical simulation

Theorem: The eigenstates of a set of observables that do not allow a non-contextual value assignment cannot have an ontic overlap

- The largest set of quantum states that can be simulated by a single ontic state is the largest set that does not allow a proof of contextuality

- Min. size of ontic space bounded by the size of the largest set of states that does not allow a proof of contextuality
Summary

• A link between contextuality in qubit stabilizer sub-theory

• A bound on the size of the state space of any model that reproduces qubit- stabilizer statistics

• Can this approach be applied to other quantum sub-theories?