The deBroglie-Bohm interpretation

Louis deBroglie
(1892-1987)

David Bohm
(1917-1992)

“I saw the impossible done...”
John Bell
Responses to the measurement problem

1. Deny realism
 - Purely operational account of quantum theory

2. Deny the universality of unitary dynamics
 - Dynamical collapse theories

3. Deny that \(\psi \) is a complete representation of reality
 - Hidden variable models
 - Models of reality beyond hidden variables?

4. Deny indeterminism and discontinuity, except as subjective illusions
 - Everett’s relative state interpretation, or “many worlds”
The deBroglie-Bohm interpretation for a single particle

The ontic state: \((\psi(r), \zeta) \)

- Wavefunction
- Particle position

\[\psi(r, t) \]

\[\zeta(t) \]
The deBroglie-Bohm interpretation for a single particle

The ontic state: \((\psi(r), \zeta)\)

Wavefunction \(\psi(r,t)\)

Particle position \(\zeta(t)\)

The evolution equations:

\[
i\hbar \frac{\partial \psi(r,t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(r,t) + V(r)\psi(r,t)
\]

Schrödinger's eq'n
The deBroglie-Bohm interpretation for a single particle

The ontic state: \((\psi(\mathbf{r}, t), \zeta)\)

Wavefunction \[\psi(\mathbf{r}, t) \]

Particle position \[\zeta(t) \]

The evolution equations:

\[
\frac{i\hbar}{\partial t} \frac{\partial \psi(\mathbf{r}, t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r}, t) + V(\mathbf{r})\psi(\mathbf{r}, t)
\]

Schrödinger’s eq’n

\[
\frac{d\zeta(t)}{dt} = \frac{1}{m} \left[\nabla S(\mathbf{r}, t) \right]_{\mathbf{r}=\zeta(t)}
\]

The guidance eq’n

where

\[
\psi(\mathbf{r}, t) = R(\mathbf{r}, t)e^{iS(\mathbf{r}, t)/\hbar}
\]
The deBroglie-Bohm interpretation for a single particle

The ontic state: \((\psi(r), \zeta)\)

Wavefunction \(\psi(r,t)\)
Particle position \(\zeta(t)\)

The evolution equations:

\[
\begin{align*}
i\hbar \frac{\partial \psi(r,t)}{\partial t} &= -\frac{\hbar^2}{2m} \nabla^2 \psi(r,t) + V(r)\psi(r,t) \quad \text{Schrödinger's eq'n} \\
\frac{d\zeta(t)}{dt} &= \frac{1}{m} \left[\nabla S(r,t) \right]_{r=\zeta(t)} \quad \text{The guidance eq'n}
\end{align*}
\]

where \(\psi(r,t) = R(r,t)e^{iS(r,t)/\hbar}\)

Note: There is no back-action on the wave
The amplitude of the wave is irrelevant → a pilot wave
Given \(\psi(r, t) = R(r, t)e^{iS(r, t)/\hbar} \)

The real part of the Schrodinger eq'n is:

\[
\frac{\partial S}{\partial t} + \frac{(\nabla S)^2}{2m} + Q + V = 0
\]

where \(Q(r, t) \equiv -\frac{\hbar^2}{2m} \frac{\nabla^2 R(r, t)}{R(r, t)} \)

The "quantum potential"

The imaginary part of the Schrodinger eq'n is:

\[
\frac{\partial}{\partial t} \left(R^2 \right) + \nabla \left(\frac{R^2 \nabla S}{m} \right) = 0
\]
Newtonian form of the particle dynamics:

\[
m \frac{d^2 \zeta(t)}{dt^2} = -\left[\nabla V(r) + \nabla Q(r, t) \right]_{r = \zeta(t)}
\]

where \(Q(r, t) \equiv -\frac{\hbar^2}{2m} \frac{\nabla^2 R(r, t)}{R(r, t)} \) \(\quad \) The “quantum potential”

(Note independence of quantum potential on magnitude)
Newtonian form of the particle dynamics:

\[m \frac{d^2 \zeta(t)}{dt^2} = -\left[\nabla V(\mathbf{r}) + \nabla Q(\mathbf{r}, t) \right]_{\mathbf{r} = \zeta(t)} \]

where \[Q(\mathbf{r}, t) \equiv -\frac{\hbar^2}{2m} \frac{\nabla^2 R(\mathbf{r}, t)}{R(\mathbf{r}, t)} \] The "quantum potential"

(Note independence of quantum potential on amplitude)

How else does deBroglie-Bohm differ from Newtonian mechanics?
Newtonian form of the particle dynamics:

\[m \frac{d^2 \zeta(t)}{dt^2} = -\left[\nabla V(r) + \nabla Q(r, t) \right]_{r=\zeta(t)} \]

where \[Q(r, t) \equiv -\frac{\hbar^2}{2m} \frac{\nabla^2 R(r, t)}{R(r, t)} \]

The “quantum potential”

(Note independence of quantum potential on amplitude)

How else does deBroglie-Bohm differ from Newtonian mechanics?

The dynamics are \textit{fundamentally first order}

\[\frac{d\zeta(t)}{dt} = \frac{1}{m} \left[\nabla S(r, t) \right]_{r=\zeta(t)} \]
Acting the ∇ operator on the real part of the Schrodinger eq'n gives:

$$\nabla \left[\frac{\partial S}{\partial t} + \frac{(\nabla S)^2}{2m} + Q + V \right] = 0$$

$$\left(\frac{\partial}{\partial t} + \frac{\nabla S \cdot \nabla}{m} \right) \nabla S = -\nabla (Q + V)$$

Taking the time derivative of the guidance equation gives:

$$\frac{d\zeta(t)}{dt} = \frac{1}{m} [\nabla S(r,t)]_{r=\zeta(t)}$$

$$\frac{d^2\zeta(t)}{dt^2} = \frac{1}{m} \left(\frac{\partial}{\partial t} + \frac{d\zeta}{dt} \cdot \nabla \right) \nabla S$$

Thus

$$m \frac{d^2\zeta(t)}{dt^2} = -[\nabla V(r) + \nabla Q(r,t)]_{r=\zeta(t)}$$
Epistemic state (assuming perfect knowledge of $\psi(r, t)$)

$\rho(\zeta)d\zeta = \text{the probability the particle is within } d\zeta \text{ of } \zeta.$

The "standard distribution"

$$\rho(\zeta, t) = |\psi(\zeta, t)|^2$$

Note: it is preserved by the dynamics:

if $\rho(\zeta, 0) = |\psi(\zeta, 0)|^2$ then $\rho(\zeta, t) = |\psi(\zeta, t)|^2$
Proof of the preservation of the standard distribution:

The velocity field is

\[\mathbf{v}(\mathbf{r}, t) = \frac{1}{m} [\nabla S(\mathbf{r}, t)] \]

The probability current density is:

\[\mathbf{j}(\mathbf{r}, t) = \rho(\mathbf{r}, t) \mathbf{v}(\mathbf{r}, t) \]

Conservation of probability implies

\[\frac{\partial \rho(\mathbf{r}, t)}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r}, t) = -\nabla \cdot \left(\frac{\rho(\mathbf{r}, t) \nabla S(\mathbf{r}, t)}{m} \right) \]
Proof of the preservation of the standard distribution:

The velocity field is

$$\mathbf{v}(\mathbf{r}, t) = \frac{1}{m} \left[\nabla S(\mathbf{r}, t) \right]$$

The probability current density is:

$$\mathbf{j}(\mathbf{r}, t) = \rho(\mathbf{r}, t) \mathbf{v}(\mathbf{r}, t)$$

Conservation of probability implies

$$\frac{\partial \rho(\mathbf{r}, t)}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r}, t) = -\nabla \cdot \left(\frac{\rho(\mathbf{r}, t) \nabla S(\mathbf{r}, t)}{m} \right)$$

Recall the imaginary part of the Schrodinger eq'n:

$$\frac{\partial}{\partial t} \left(R^2 \right) = -\nabla \cdot \left(\frac{R^2 \nabla S}{m} \right)$$
Proof of the preservation of the standard distribution:

The velocity field is

\[\mathbf{v}(\mathbf{r}, t) = \frac{1}{m} \nabla S(\mathbf{r}, t) \]

The probability current density is:

\[\mathbf{j}(\mathbf{r}, t) = \rho(\mathbf{r}, t) \mathbf{v}(\mathbf{r}, t) \]

Conservation of probability implies

\[\frac{\partial \rho(\mathbf{r}, t)}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r}, t) = -\nabla \cdot \left(\frac{\rho(\mathbf{r}, t) \nabla S(\mathbf{r}, t)}{m} \right) \]

Recall the imaginary part of the Schrodinger eq’n:

\[\frac{\partial}{\partial t} \left(R^2 \right) = -\nabla \cdot \left(\frac{R^2 \nabla S}{m} \right) \]

Therefore, if \(\rho(\mathbf{r}, t) = R^2(\mathbf{r}, t) \) then

\[\frac{\partial}{\partial t} \left(\rho(\mathbf{r}, t) - R^2(\mathbf{r}, t) \right) = 0 \]
\[\psi = \sum_j c_j \psi_j \]

“waves” of the decomposition

Spatial support of \(\psi_j = \{ \mathbf{r} : \psi_j(\mathbf{r}) \neq 0 \} \)

\(\zeta \subseteq \) Spatial support of \(\psi_j \) \(j \)th wave is occupied

\(\zeta \nsubseteq \) Spatial support of \(\psi_j \) \(j \)th wave is empty

If only the \(k \)th wave is occupied

Then the guidance equation depends only on the \(k \)th wave
Proof of ineffectiveness of empty waves

\[\psi = \psi_a + \psi_b \]

\[\text{Re} e^{i\phi/\hbar} = R_a e^{iS_a/\hbar} + R_b e^{iS_b/\hbar} \]

\[R^2 = R_a^2 + R_b^2 + 2R_a R_b \cos\left(\frac{(S_a - S_b)}{\hbar}\right) \]

\[\nabla S = R^{-2} \left\{ R_a \nabla S_a + R_b \nabla S_b + R_a R_b \cos\left(\frac{(S_a - S_b)}{\hbar}\right) \nabla (S_a + S_b) \right\} \]

\[-\hbar \left[R_a \nabla R_b - R_b \nabla R_a \right] \sin\left(\frac{(S_a - S_b)}{\hbar}\right) \]
Proof of ineffectiveness of empty waves

\[\psi = \psi_a + \psi_b \]

\[R e^{i\frac{S}{\hbar}} = R_a e^{i\frac{S_a}{\hbar}} + R_b e^{i\frac{S_b}{\hbar}} \]

\[R^2 = R_a^2 + R_b^2 + 2 R_a R_b \cos \left(\frac{(S_a - S_b)}{\hbar} \right) \]

\[\nabla S = R^{-2} \left\{ R_a^2 \nabla S_a + R_b^2 \nabla S_b + R_a R_b \cos \left[\frac{(S_a - S_b)}{\hbar} \right] \nabla (S_a + S_b) \right\} \]

\[- \frac{\hbar}{2} \left[R_a \nabla R_b - R_b \nabla R_a \right] \sin \left[\frac{(S_a - S_b)}{\hbar} \right] \]

If \(R_a R_b \approx 0, \quad R_a \nabla R_b \approx 0, \quad R_b \nabla R_a \approx 0 \)

then \(R^2 = R_a^2 + R_b^2 \) and \(\nabla S = \frac{R_a^2 \nabla S_a + R_b^2 \nabla S_b}{R_a^2 + R_b^2} \)
Proof of ineffectiveness of empty waves

\[\psi = \psi_a + \psi_b \]

\[\text{Re} e^{iS/a} = R_a e^{iS_a/h} + R_b e^{iS_b/h} \]

\[R^2 = R_a^2 + R_b^2 + 2R_a R_b \cos \left(\frac{(S_a - S_b)}{\hbar} \right) \]

\[\nabla S = R^{-2} \left\{ R_a \nabla S_a + R_b \nabla S_b + R_a R_b \cos \left(\frac{(S_a - S_b)}{\hbar} \right) \nabla (S_a + S_b) \right\} \]

\[-\hbar \left[R_a \nabla R_b - R_b \nabla R_a \right] \sin \left(\frac{(S_a - S_b)}{\hbar} \right) \]

If \(R_a R_b \approx 0 \), \(R_a \nabla R_b \approx 0 \), \(R_b \nabla R_a \approx 0 \)

then \(R^2 = R_a^2 + R_b^2 \) and \(\nabla S = \frac{R_a^2 \nabla S_a + R_b^2 \nabla S_b}{R_a^2 + R_b^2} \)

\[\frac{d\xi(t)}{dt} = \frac{1}{m} \left[\nabla S(r, t) \right]_{r = \xi(t)} \]
Proof of ineffectiveness of empty waves

\[\psi = \psi_a + \psi_b \]

\[\text{Re} e^{i\psi/\hbar} = R_a e^{iS_a/\hbar} + R_b e^{iS_b/\hbar} \]

\[R^2 = R_a^2 + R_b^2 + 2R_a R_b \cos \left(\frac{(S_a - S_b)}{\hbar} \right) \]

\[\nabla S = R^{-2} \left\{ R_a^2 \nabla S_a + R_b^2 \nabla S_b + R_a R_b \cos \left(\frac{(S_a - S_b)}{\hbar} \right) \nabla (S_a + S_b) \right\} \]

\[\left[-\hbar [R_a \nabla R_b - R_b \nabla R_a] \sin \left(\frac{(S_a - S_b)}{\hbar} \right) \right] \]

If \(R_a R_b \approx 0, \quad R_a \nabla R_b \approx 0, \quad R_b \nabla R_a \approx 0 \)

then \(R^2 = R_a^2 + R_b^2 \) and \(\nabla S = \frac{R_a^2 \nabla S_a + R_b^2 \nabla S_b}{R_a^2 + R_b^2} \)

\[\frac{d\xi(t)}{dt} = \frac{1}{m} \left[\nabla S(\mathbf{r},t) \right]_{\mathbf{r} = \xi(t)} = \frac{\nabla S_a}{m} \quad \text{If } \xi \in \text{ Support of } \psi_a \]

\[= \frac{\nabla S_b}{m} \quad \text{If } \xi \in \text{ Support of } \psi_b \]
Double slit experiment
Transmission through a barrier (probability ½)
Beam splitter experiment
The deBroglie-Bohm interpretation for many particles

The ontic state: \(\psi(r_1, r_2, \zeta_1, \zeta_2) \)

Wavefunction on configuration space
Particle positions

\[\psi(r_1, r_2) \]
The deBroglie-Bohm interpretation for many particles

The ontic state: \((\psi(r_1, r_2), \xi_1, \xi_2) \)

Wavefunction on configuration space

Particle positions

The evolution equations:

Schrödinger’s equation

\[
\frac{i\hbar}{\hbar} \frac{\partial \psi(r_1, r_2, t)}{\partial t} = - \frac{\hbar^2}{2m_1} \nabla_1^2 \psi(r_1, r_2, t) - \frac{\hbar^2}{2m_2} \nabla_2^2 \psi(r_1, r_2, t) + V(r_1, r_2) \psi(r_1, r_2, t)
\]
The deBroglie-Bohm interpretation for many particles

The ontic state: \(\langle \psi(\mathbf{r}_1, \mathbf{r}_2), \zeta_1, \zeta_2 \rangle \)

Wavefunction on configuration space

Particle positions

The evolution equations:

\[i\hbar \frac{\partial \psi(\mathbf{r}_1, \mathbf{r}_2, t)}{\partial t} = -\frac{\hbar^2}{2m_1} \nabla^2_1 \psi(\mathbf{r}_1, \mathbf{r}_2, t) - \frac{\hbar^2}{2m_2} \nabla^2_2 \psi(\mathbf{r}_1, \mathbf{r}_2, t) + V(\mathbf{r}_1, \mathbf{r}_2) \psi(\mathbf{r}_1, \mathbf{r}_2, t) \]

\[\frac{d\zeta_1(t)}{dt} = \frac{1}{m_1} \left[\nabla_1 S(\mathbf{r}_1, \mathbf{r}_2, t) \right]_{\mathbf{r}_1 = \zeta_1(t), \mathbf{r}_2 = \zeta_2(t)} \]

\[\frac{d\zeta_2(t)}{dt} = \frac{1}{m_2} \left[\nabla_2 S(\mathbf{r}_1, \mathbf{r}_2, t) \right]_{\mathbf{r}_1 = \zeta_1(t), \mathbf{r}_2 = \zeta_2(t)} \]

The guidance equation

where \(\psi(\mathbf{r}_1, \mathbf{r}_2, t) = R(\mathbf{r}_1, \mathbf{r}_2, t) e^{iS(\mathbf{r}_1, \mathbf{r}_2, t)/\hbar} \)
\[\psi(r_1, r_2, t) = \phi^{(1)}(r_1, t) \chi^{(2)}(r_2, t) \tag{Product state} \]
\[= R_1(r_1, t)e^{iS_1(r_1, t)/\hbar} R_2(r_2, t)e^{iS_2(r_2, t)/\hbar} \]

\[S(r_1, r_2, t) = S_1(r_1, t) + S_2(r_2, t) \]

\[\frac{d\xi_1(t)}{dt} = \frac{1}{m_1} \left[\nabla_{r_1} S(r_1, r_2, t) \right]_{r_1 = \xi_1(t), r_2 = \xi_2(t)} = \frac{1}{m_1} \left[\nabla_{r_1} S_1(r_1, t) \right]_{r_1 = \xi_1(t)} \]

\[\frac{d\xi_2(t)}{dt} = \frac{1}{m_2} \left[\nabla_{r_2} S(r_1, r_2, t) \right]_{r_1 = \xi_1(t), r_2 = \xi_2(t)} = \frac{1}{m_2} \left[\nabla_{r_2} S_2(r_2, t) \right]_{r_2 = \xi_2(t)} \]

The two particles evolve independently
\[\psi(r_1, r_2, t) = \sum_j c_j \phi_j^{(1)}(r_1, t) \chi_j^{(2)}(r_2, t) \quad \text{Entangled state} \]

\[(\zeta_1, \zeta_2) \in \text{support of } \phi_j^{(1)}(r_1, t) \chi_j^{(2)}(r_2, t) \quad j\text{th wave is occupied}\]
\[
\psi(r_1, r_2, t) = \sum_j c_j \phi_j^{(1)}(r_1, t) \chi_j^{(2)}(r_2, t)
\]

Entangled state

((\zeta_1, \zeta_2) \in \text{ support of } \phi_j^{(1)}(r_1, t) \chi_j^{(2)}(r_2, t)) \quad j\text{th wave is } \text{occupied}

((\zeta_1, \zeta_2) \notin \text{ support of } \phi_j^{(1)}(r_1, t) \chi_j^{(2)}(r_2, t)) \quad j\text{th wave is } \text{empty}

If only the kth wave is occupied

Then the particles evolve independently
$$\psi(r_1, r_2, t) = \sum_j c_j \phi_j^{(1)}(r_1, t) \chi_j^{(2)}(r_2, t)$$ \hspace{1cm} \text{Entangled state}$$

$$((\zeta_1, \zeta_2) \in \text{ support of } \phi_j^{(1)}(r_1, t) \chi_j^{(2)}(r_2, t) \quad \text{ jth wave is occupied}$$

$$((\zeta_1, \zeta_2) \notin \text{ support of } \phi_j^{(1)}(r_1, t) \chi_j^{(2)}(r_2, t) \quad \text{ jth wave is empty}$$

If only the kth wave is occupied

Then the particles evolve independently

But in general, they do not

This implies a failure of local causality and of Lorentz invariance at the ontological level
\[\psi(r_1, r_2; t) = c_a \phi_a(r_1, t) \chi_a(r_2, t) + c_b \phi_b(r_1, t) \chi_b(r_2, t) \]
\[\psi(r_1, r_2; t) = c_a \phi_a(r_1, t) \chi_a(r_2, t) + c_b \phi_b(r_1, t) \chi_b(r_2, t) \]
\[\psi(r_1, r_2; t) = c_a \phi_a(r_1, t) \chi_a(r_2, t) + c_b \phi_b(r_1, t) \chi_b(r_2, t) \]
\[
\psi(r_1, r_2; t) = c_a \phi_a(r_1, t) \chi_a(r_2, t) + c_b \phi_b(r_1, t) \chi_b(r_2, t)
\]

occupied wave

\[
\frac{d\zeta_2(t)}{dt} = \frac{1}{m_2} \left[\nabla_2 S(r_1, r_2, t) \right]_{r_1 = \zeta_1(t), r_2 = \zeta_2(t)}
\]
\[\psi(r_1, r_2; t) = c_a \phi_a(r_1, t) \chi_a(r_2, t) + c_b \phi_b(r_1, t) \chi_b(r_2, t) \]

occupied wave

\[\frac{d\zeta_2(t)}{dt} = \frac{1}{m_2} \left[\nabla_2 S(r_1, r_2, t) \right]_{r_1 = \zeta_1(t), r_2 = \zeta_2(t)} \]
\[
\psi(r_1, r_2; t) = c_a \phi_a(r_1, t) \chi_a(r_2, t) + c_b \phi_b(r_1, t) \chi_b(r_2, t)
\]

both waves occupied
\[\psi(r_1, r_2; t) = c_a \phi_a(r_1, t) \chi_a(r_2, t) + c_b \phi_b(r_1, t) \chi_b(r_2, t) \]

both waves occupied

Failure of local causality
Reproducing the operational predictions

Consider a measurement of \mathcal{A} with eigenvectors $\phi_k(r)$

$$\phi_k(r)\chi(r') \rightarrow \phi_k(r)\chi_k(r')$$
Reproducing the operational predictions

Consider a measurement of A with eigenvectors $\phi_k(r)$

$$\phi_k(r)\chi(r') \rightarrow \phi_k(r)\chi_k(r')$$

$$[\sum_k c_k\phi_k(r)]\chi(r') \rightarrow \sum_k c_k\phi_k(r)\chi_k(r')$$

Assumption: different outcomes of a measurement correspond to disjoint regions of the configuration space of the apparatus

$$\chi_j(r')\chi_k(r') \simeq 0 \text{ if } j \neq k$$
Reproducing the operational predictions

Consider a measurement of \(A \) with eigenvectors \(\phi_k(r) \)

\[
\phi_k(r) \chi(r') \rightarrow \phi_k(r) \chi_k(r')
\]

\[
[\sum_k c_k \phi_k(r)] \chi(r') \rightarrow \sum_k c_k \phi_k(r) \chi_k(r')
\]

Assumption: different outcomes of a measurement correspond to disjoint regions of the configuration space of the apparatus

\[
\chi_j(r') \chi_k(r') \approx 0 \quad \text{if} \quad j \neq k
\]

If the \(j \)th wave comes to be occupied, then one can postulate an effective collapse of the guiding wave

\[
\sum_k c_k \phi_k(r) \rightarrow \phi_j(r)
\]
Reproducing the operational predictions

Consider a measurement of A with eigenvectors $\phi_k(r)$

$$\phi_k(r) \chi(r') \rightarrow \phi_k(r) \chi_k(r')$$

$$[\sum_k c_k \phi_k(r)] \chi(r') \rightarrow \sum_k c_k \phi_k(r) \chi_k(r')$$

Assumption: different outcomes of a measurement correspond to disjoint regions of the configuration space of the apparatus

$$\chi_j(r') \chi_k(r') \simeq 0 \text{ if } j \neq k$$

If the jth wave comes to be occupied, then one can postulate an effective collapse of the guiding wave

$$\sum_k c_k \phi_k(r) \rightarrow \phi_j(r)$$

Decoherence makes the process effectively irreversible
Criticisms

- Fails to satisfy the action-reaction principle

- The quantum state plays an epistemic role in determining the initial distribution but it also plays an ontic role in the guidance equation

- Underdetermination of preferred variable and of the form of the dynamics

- Lorentz-invariance at the operational level, failure of Lorentz invariance at the ontological level

- Involves more contextuality and nonlocality than necessary to avoid contradiction

- Everett in denial?
The “standard distribution” as quantum equilibrium

Figure 7. Smoothed ρ ((a), (c) and (e)), compared with $|\psi|^2$ ((b), (d) and (f)), at times $t = 0$ ((a), (b)), 2π ((c), (d)) and 4π ((e), (f)). While $|\psi|^2$ recovers its initial value, the smoothed ρ shows a remarkable evolution towards equilibrium.