Abstract: Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational energy to trigger the growth of a bosonic condensate. In this talk I will give an overview on superradiance and its applications focusing on the observational imprints of this process around spinning black holes which include: (i) the emission of monochromatic gravitational waves emitted by bosonic condensate formed through superradiant instabilities, potentially observable by current and future gravitational-wave detectors, and (ii) the formation of gaps in the spin versus mass plane of astrophysical black holes.
Gravitational wave searches for ultralight bosons

Richard Brito
Max Planck Institute for Gravitational Physics
(Potsdam)

Mostly based on:
In collaboration with S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein & P. Pani

Ultralight bosons?

- Black-hole superradiance can fill an important gap in the parameter space
- Roughly independent on the coupling to SM particles (CAUTION: if couplings or self-interactions are large enough, phenomenology will be different)

From: Cardoso et al '18, JCAP1803 043
Superradiance

Zel’dovich, ’71; Misner ’72; Press and Teukolsky , ’72-74

\[\Phi(t, r, \theta, \phi) = \Psi(r)e^{-i\omega t + im\phi} P_l(\cos \theta) \]

\[\frac{\omega}{m} < \Omega_H \]

Superradiant scattering of \textit{bosonic} waves \hspace{2cm} \Rightarrow \hspace{2cm} \text{Extraction of energy and angular momentum from the black hole}
Superradiance in the lab

\[R = \sqrt{\frac{J_{\text{out}}}{J_{\text{in}}}} \]

Recently observed in the lab for an analogue BH.
Superradiance: amplification factors

Press and Teukolsky, ’72-74

- Amplification factors larger for spin-2 fields (gravitational waves)
- Amplification factors grow with the black hole spin
- Nonlinear effects slightly decrease the efficiency East, Ramazanoglu & Pretorius, ’14
Superradiant instability

Confinement + Superradiance \rightarrow \text{Superradiant instability}

Press & Teukolsky, '72

The Yukawa potential of a **massive bosonic field** naturally confines low-frequency waves.

Spinning BHs are unstable against massive bosons.

Damour '76; Zouros & Eardley '79, Detweiler '80; Dolan '07,…

Mostly relevant when:

\[
\frac{M m_b}{M_{Pl}^2} \sim \left(\frac{M}{10M\odot} \right) \left(\frac{m_b c^2}{10^{-11}\text{eV}} \right) \sim \mathcal{O}(1)
\]
Superradiant instability: unified picture

Zouros & Eardley ’79; Detweiler ’80; Dolan ’07; Pani et al ’12; RB, Cardoso & Pani ’13; Baryakhtar, Lasenby & Teo ’17; East ’17; Cardoso et al ’18; Frolov, Krtous, Kubiznák & Santos ’18,...

- **s=0**, \(\Box \Phi - \mu_S^2 \Phi = 0 \)

- **s=1**, \[
\begin{align*}
\Box A_\nu - R_\nu \mu A^\mu - \mu_V^2 A_\nu &= 0, \\
\mu_V^2 \nabla^\mu A_\mu &= 0.
\end{align*}
\]

- **s=2**, \[
\begin{align*}
\Box h_{\mu \nu} + 2R_{\alpha \beta \mu \nu} h^{\alpha \beta} - \mu_T^2 h_{\mu \nu} &= 0, \\
\mu_T^2 \nabla^\mu h_{\mu \nu} &= 0, \\
(\mu_T^2 - 2A/3) h &= 0.
\end{align*}
\]

(Note: computation assuming small-spin approximation)

\[
\delta X_{\mu_1 \ldots} (t, r, \theta, \phi) = \delta X^{(i)}_{lm}(r) \gamma_{\mu_1 \ldots}^{lm(i)}(\theta) e^{im\phi} e^{-i\omega t}
\]

\[
\delta X (r \to \infty) \propto e^{-r \sqrt{\mu^2 - \omega^2}}
\]

\[
\omega = \omega_R + i\omega_I
\]

\[
\omega_R \sim \mu
\]

\[
\omega_I \propto (m\Omega_H - \omega_R) (M \mu)^\alpha
\]
Evolution of the superradiant instability?

- During the instability phase black hole slowly loses spin and mass until it reaches saturation $\omega_R = m\Omega_H$.

- Formation of long-lived bosonic condensates around BHs (or truly stationary hairy black holes for complex fields Herdeiro & Radu ’14).

- Numerical simulations confirm linear/adiabatic predictions. East & Pretorius, ’17; P. Bosch, S. Green & L. Lehner, ’16; Sanchis-Gual et al ’16; RB, Cardoso & Pani ’15

CW sources: classical GR point of view

- Formation of “gravitational atoms” around spinning black holes:

 \[\Phi = \epsilon \Re \left(\phi_{lmn}(r)S_{lm}(\theta)e^{im\varphi}e^{i\omega_R t} \right) \]

 \[T_{\mu\nu} = -\frac{1}{4} (\Phi,_{\alpha} \Phi^{,\alpha} + \mu^2 \Phi^2) + \frac{1}{2} \Phi^{,\mu} \Phi^{,\nu} \sim \epsilon^2 \sin(2\omega_R t) \ldots \]

- These condensates are a source of very long-lived gravitational wave signals:

 \[G^{(0)}_{\mu\nu} + \epsilon^2 \delta G^{(2)}_{\mu\nu} = \epsilon^2 \delta T_{\mu\nu} \]

- Backreaction of the scalar field onto the geometry is small (confirmed by numerical simulations).

- Gravitational-wave signal can be accurately computed within black hole perturbation theory.
Continuous gravitational wave sources

Arvanitaki, Dimopoulos, Dubovsky, Kaloper & March-Russell '09; Arvanitaki & Dubovsky, '10; Yoshino & Kodama '14; Arvanitaki, Baryakhtar & Huang, '15; ...

superradiant instability

\[\frac{\dot{E}_{SR}}{\omega m} < \frac{\dot{J}_{SR}}{\tau_{SR}^{\text{min}}} \approx 10^7 M \]

GW emission

\[\frac{\dot{E}_{GW}}{\omega m} = \frac{\dot{J}_{GW}}{\tau_{GW}^{\text{min}}} \approx 10^{10} M \]

f_{GW} \sim 5 \text{ mHz} \left(\frac{m_{eV}^2}{10^{-11} \text{eV}} \right),

\[\frac{\omega}{m} = \Omega_H \]

GWS

\[\log_{10}(m_e/\text{eV}) \]

\[\text{f}_{\text{Hz}} \]

\[\text{t}_{\text{rad/(yrs)}} \]

\[\text{t}_{\text{gw/(yrs)}} \]

\[M_{BH} = 15M_0 \]
Gaps in the mass vs spin plane

Arvanitaki, Dimopoulos, Dubovsky, Kaloper & March-Russell ’09; Arvanitaki & Dubovsky, ’10

- Separation of scales allows for an adiabatic evolution of the system

- Observations of several BHs, with precise measurement of mass and spin, could give indications of new physics.

\[\tau_{\text{instability}} \approx \tau_{\text{accretion}} \]

\[\tau_{\text{accretion}} \sim 4.5 \times 10^7 \text{yr} / f_{\text{Edd}} \]

Random distributions of the initial BH mass between \(\log_{10} M_0 \in [4, 7.5] \) and \(J_0 / M_0^2 \in [0.001, 0.99] \) extracted at \(t = t_F \), where \(t_F \) is distributed on a Gaussian centered at \(\tilde{t}_F \sim 2 \times 10^9 \text{yr} \) with width \(\sigma = 0.1 \tilde{t}_F \).

RB, Cardoso, Pani, ‘14
MBH spin & mass function

- In reality MBH spin and mass evolution is very messy: semi-analytical model (Barausse 2012, arXiv:1201.5888) calibrated to data

\[M_{bh} \text{ [}M_\odot\text{]} \]

- Low-mass end of MBH mass function mostly unconstrained:

From: Sesana, EB, Dotti & Rossi '14

From: Babak et al '17
Massive black hole binaries: merger rates

- $\text{popIII}=\text{light seeds}$
- $\text{Q3-d}=\text{heavy seeds, delays}$
- $\text{Q3-nod}=\text{heavy seeds, no delays}$

![Graphs showing merger rates vs redshift and mass.](image)

From Klein, Barausse et al '15

- Seed model: light seeds from PopIII stars (~ 100 Msun) vs heavy seeds from instabilities of protogalactic disks ($\sim 10^5$ Msun)

- No delays between galaxy and BH merger, or delays depending on environment
Laser Interferometer Space Antenna

From LISA Proposal ’17, arXiv:1702.00786

“Laser Interferometer Space Antenna” (LISA) selected as ESA’s L3 Mission in 2017. Launch expected in ~2034.
Gaps in the mass vs spin plane: spin-0

- LISA can measure BH masses and spins with very good precision.
Constraining ultralight bosons

- Use Bayesian model comparison to constrain/measure mass of the boson
- LISA could rule out/detect scalar fields in the mass range $\sim [10^{-13}, 10^{-18}]$ eV
- NOTE: LISA could also detect early inspiral of stellar mass BBHs (Sesana '16)
Gaps in the mass vs spin plane: spin-1

Baryakhtar, Lasenby & Teo ’17, Cardoso et al ’18

- Exact instability timescales (i.e. valid for any spin) recently computed for massive spin-1 fields
- LISA should provide similar constraints for spin-1 fields.
- Can we measure the spin of the particle, e.g. using Bayesian model comparison?
- Similar constraints can be put on massive spin-2 fields (massive gravitons)

From: Cardoso et al ’18, JCAP1803 043

RB, Cardoso & Pani, 2013
Multi-band GW searches

Vertical lines: $a/M = 0.9; z = 0.01-3.01$ (right to left), $M \mu$ grows along vertical lines
Astrophysical models

- For LISA we use the semi-analytical models of arXiv:1201.5888 (Barausse ’12).

- For LIGO we need BH mass and spin distributions for both galactic and extragalactic stellar mass BHs. We use models described in arXiv: 1604.04288 (Dvorkin et al ’16,17) that take into account redshift-dependent SFR and metallicity. Caveat: does not predict spin distribution.

- LIGO is mostly sensitive to signals within the galaxy. However unresolvable extragalactic sources can produce a large stochastic background.
Stochastic Background from extragalactic sources

\[\Omega_{GW} = \frac{1}{\rho_c} \frac{d \rho_{GW}}{d \ln f} = \frac{f}{\rho_c c^2} \int_{\text{SNR} < 8} dM dz d\alpha dE_s \frac{d^2 n}{dz dM d\alpha} df_s \]

\[dE_s/df_s \approx E_{GW} \delta(f(1+z) - f_s) \]

\[E_{GW} = \int_\Delta t dE/dt \]

\[\Delta t = \langle \min(\tau_{GW}/(N_m + 1), t_s, t_0) \rangle \]

- The existence of many unresolved sources produces a large stochastic background with uncertainties mostly dominated by the BH spin distribution.
Back-of-the-envelope estimate

- Average mass fraction of the BH population emitted by the boson cloud is:

\[f_{\text{ax}} \sim \mathcal{O}(1\%) \]

- The stochastic background can be estimated as:

\[\Omega_{\text{GW, ax}} = (1/\rho_c)(d\rho_{\text{GW}}/d \ln f) \sim f_{\text{ax}}\rho_{\text{BH}}/\rho_c \]

- For BHs in the LISA band: \(\rho_{\text{BH}} \sim \mathcal{O}(10^4) M_\odot/\text{Mpc}^3 \) \(\implies \Omega_{\text{GW, ax}}^{\text{LISA}} \sim 10^{-9} \)

- For LIGO we note that for BH binaries, \(\Omega_{\text{GW, bin}} \sim f_{\text{GW}} f_{m \rho_{\text{BH}}}/\rho_c \), where \(f_{\text{GW}} \sim \mathcal{O}(1\%) \) is the binary’s mass fraction emitted in GWs and \(f_{m} \sim \mathcal{O}(1\%) \) is the fraction of stellar-mass BHs in binaries that merge in less than the Hubble time.

\[\Omega_{\text{GW, ax}}/\Omega_{\text{GW, bin}} \sim f_{\text{ax}}/(f_{\text{GW}} f_{m}) \sim 10^2 \]

\[\Omega_{\text{GW, bin}} \sim 10^{-9} - 10^{-8} \implies \Omega_{\text{GW, ax}}^{\text{LIGO}} \sim 10^{-7} - 10^{-6} \]
Stochastic Background from extragalactic sources

\[\Omega_{GW} = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d \ln f} = \frac{f}{\rho_c c^2} \int_{SNR<8} d\alpha dM d\varepsilon \frac{dt}{dz} \frac{d^2n}{dMda} \frac{dE_s}{df_s} \]

\[dE_s/df_s \approx E_{GW} \delta(f(1+z) - f_s) \]

\[E_{GW} = \int_{\Delta t} dE/dt \]

\[\Delta t = \langle \min(\tau_{GW}/(N_m + 1), t_S, t_0) \rangle \]

- The existence of many unresolved sources produces a **large stochastic background** with uncertainties mostly dominated by the BH spin distribution.
Resolvable sources

\[D = \frac{\sqrt{S_h(f)}}{h_{\text{thr}}} \]

- If there is a massive light boson in the right mass range we will see it.
Conclusions

- **Measurements of the spin and mass** of pre-merger black holes detected by LISA could rule out (or detect) a large range of light bosonic fields.

- Bosonic condensates around BHs produced by superradiant instabilities can act as **continuous gravitational wave sources** which could be observed with current and future gravitational wave detectors.

- Large number of unresolved sources produces a **large stochastic gravitational wave background**.

- Join different channels and current data to start constraining parameter space.

Thank you!