Title: Probing Dark Matter Particle Properties with Ultra-High-Resolution CMB Lensing

Speakers: Neelima Sehgal

Collection: Cosmological Frontiers in Fundamental Physics 2019

Date: September 06, 2019 - 10:45 AM

URL: http://pirsa.org/19090017

Abstract: I will discuss a novel and powerful way to probe dark matter particle properties using deep, high-resolution cosmic microwave background (CMB) gravitational lensing measurements. These measurements can distinguish between cold dark matter and alternative dark matter models that can explain observational puzzles of small-scale structure. I will also discuss a new experiment being developed, called CMB-HD, that can achieve this science and also open new windows on the early Universe, gas and galaxy evolution, planetary studies, and the transient sky.
What is Dark Matter?

- all evidence from gravitational interaction
- other interactions tightly constrained

Uncovering its identity is one of the most important goals in particle physics today
Cold, collisionless Dark Matter passes an enormous number of tests...
A simulated Milky-Way CDM Halo

Via Lactea II Simulation
(only DM, no baryons)
Missing Satellites Problem

e.g. Klypin et al. 1999; Moore et al. 1999

many subhalos ("dwarfs") predicted...
not enough are observed!

Cumulative number \((N > v_c) \)

\[V_{\text{circ}} \text{ (km s}^{-1}) \]

more massive
Small-Scale CDM Problems?

- CDM works well on scales larger than 10 kpc, but seems to fail on smaller scales (maybe):
Gravitational Lensing of the Cosmic Microwave Background
Advantage of CMB Lensing to Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing

2. Source light is at well-defined redshift

Neelima Sehgal, Stony Brook
Advantage of CMB Lensing to Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing

2. Source light is at well-defined redshift

Neelima Sehgal, Stony Brook
CMB Lensing Power Spectrum

\[C_{\ell}^{\phi\phi} = \frac{9 \Omega_{m0}^2 H_0^4}{c^4} \int_0^{\chi_s} d\chi \left(\frac{\chi_s - \chi}{\chi^2 \chi_s} \right)^2 \frac{(1 + z)^2 P_m(k, z(\chi))}{k^4} \]

\[C_{\ell}^{KK} = \frac{[L(L + 1)]^2 C_{\ell}^{\phi\phi}}{4} \]

Measured on scales $L < 3000$ so far ($k < 1 \text{ Mpc}^{-1}$)

Want to measure scales $L \sim 30,000$ ($k \sim 10 \text{ Mpc}^{-1}$ and $M < 10^{9} \text{ Msun}$)

at these scales sensitive to structure at $z \sim 1-3$

Neelima Sehgal, Stony Brook
CMB Lensing Power Spectrum for CDM Versus FDM/WDM

Fractional difference between FDM/WDM and CDM for the CMB lensing power spectrum

Neelima Sehgal, Stony Brook
Dark Matter Constraints Not Degenerate with Neutrino Mass

Neelima Sehgal, Stony Brook
Dark Matter Constraints Not Degenerate with Neutrino Mass

CMB lensing is known for its potential to constrain the sum of the neutrino masses

Alternative DM models of interest suppress power on much smaller scales

Neelima Sehgal, Stony Brook
Dark Matter Constraints Not Degenerate with Neutrino Mass

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2019, PRD

Neelima Sehgal, Stony Brook
Dark Matter Forecasts Using Ultra-Small-Scale CMB Lensing

\[C_L^{\phi\phi} \]

- \(10^{-22}\text{eV FDM} \)
- CDM
- CMB-HD

8-sigma preference for FDM over CDM

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2019, PRD
NS et al., 2019, arXiv:1903.03263

Neelima Sehgal, Stony Brook
Instrument Path

Two new 30-meter mm-wave telescopes in Atacama Desert with total sensitivity 3 times deeper than CMB-S4 = CMB-HD

Neelima Sehgal, Stony Brook
CMB-HD Probe of Light Particles

Table 1: Summary of CMB-HD key science goals in fundamental physics

<table>
<thead>
<tr>
<th>Science</th>
<th>Parameter</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Matter</td>
<td>S/N: Significance in Differentiating FDM/WDM from CDM(^a)</td>
<td>S/N = 8</td>
</tr>
<tr>
<td>New Light Species</td>
<td>(N_{\text{eff}}): Effective Number of Relativistic Species(^b)</td>
<td>(\sigma(N_{\text{eff}}) = 0.014)</td>
</tr>
<tr>
<td>Inflation</td>
<td>(f_{\text{NL}}): Primordial Non-Gaussianity(^c)</td>
<td>(\sigma(f_{\text{NL}}) = 0.26)</td>
</tr>
<tr>
<td>Inflation</td>
<td>(A_{\text{lens}}): Residual Lensing B-modes(^d)</td>
<td>(A_{\text{lens}} = 0.1)</td>
</tr>
</tbody>
</table>

CMB-HD Probe of Light Particles

Table 1: Summary of CMB-HD key science goals in fundamental physics

<table>
<thead>
<tr>
<th>Science</th>
<th>Parameter</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Matter</td>
<td>S/N: Significance in Differentiating FDM/WDM from CDM(^a)</td>
<td>S/N = 8</td>
</tr>
<tr>
<td>New Light Species</td>
<td>(N_{\text{eff}}): Effective Number of Relativistic Species(^0)</td>
<td>(\sigma(N_{\text{eff}}) = 0.014)</td>
</tr>
<tr>
<td>Inflation</td>
<td>(f_{\text{NL}}): Primordial Non-Gaussianity(^c)</td>
<td>(\sigma(f_{\text{NL}}) = 0.26)</td>
</tr>
<tr>
<td>Inflation</td>
<td>(A_{\text{lens}}): Residual Lensing B-modes(^d)</td>
<td>(A_{\text{lens}} = 0.1)</td>
</tr>
</tbody>
</table>

Theory Questions

Degeneracy between baryons impacting matter and alternatives to CDM

Use difference in shape
Theory Questions

Degeneracy between baryons impacting matter and alternatives to CDM

Use difference in shape

Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation

Aurel Schneider, Romain Teyssier, Joachim Stadel, Nora Elisa Chisari, Amandine M. C. Le Brun, Adam Amara, Alexandre Refregier
Summary

- Key question: what do matter fluctuations look like on small scales?

- Multiple techniques to measure this are proposed, each with different challenges and systematics.

- Another complementary, potentially powerful technique, with different systematics, is to use ultra-deep, high-resolution CMB lensing to measure the matter power spectrum.

- Requires two 30-meter mm-wave telescopes with total sensitivity 3 times deeper than proposed CMB-S4.