Title: Non-invertible anomalies and Topological orders

Speakers: Wenjie Ji

Series: Condensed Matter

Date: November 19, 2019 - 3:30 PM

URL: http://pirsa.org/19110125

Abstract:

It has been realized that anomalies can be classified by topological phases in one higher dimension. Previous studies focus on 't Hooft anomalies of a theory with a global symmetry that correspond to invertible topological orders and/or symmetry protected topological orders in one higher dimension. In this talk, I will introduce an anomaly that appears on the boundaries of (non-invertible) topological order with anyonic excitations [1]. The anomalous boundary theory is no longer invariant under a re-parametrization of the same spacetime manifold. The anomaly is matched by simple universal topological data in the bulk, essentially the statistics of anyons. The study of non-invertible anomalies opens a systematic way to determine all gapped and gapless boundaries of topological orders, by solving simple eigenvector problems. As an example, we find all conformal field theories (CFT) of so-called ``minimal models'', except four cases, can be the critical boundary theories of \mathbb{Z}_2 topological order (toric code). The matching of non-invertible anomaly have wide applications. For example, we show that the gapless boundary of double-semion topological order must have central charge $c_L=c_R \geq 25/28$. And the gapless boundary of the non-Abelian topological order described by S_3 topological quantum field theory can be three-state Potts CFT, $\text{su}(2)_4$ CFT, etc. [1] WJ, Xiao-Gang Wen, arXiv: 1905.13279, Phys. Rev. Research 1,033054
Non-invertible Anomalies and Topological Order

Wenjie Ji

Massachusetts Institute of Technology

Perimeter Institute, Waterloo 2019

[WJ, Xiao-Gang Wen, Phys. Rev. Research 1, 033054]
Acknowledgment

Xiao-Gang Wen (MIT) Shu-Heng Shao (IAS)
\(d \)-dimensional \(\leftrightarrow \) \(d + 1 \)-dimensional

Boundary states ? topological phases
Any additional properties = Anomaly

$H_{\text{bdy}} = i \int dx \psi^\dagger \partial_x \psi$

Bulk Topological orders without anyons

Boundary e.x. Integer quantized electric Hall conductance
Chiral Luttinger liquid

Bulk Topological orders with anyons

Boundary e.x. Fractional quantized electric Hall conductance
thermal Hall conductance
Boundary \leftrightarrow Bulk

No thermal Hall conductance non-chiral topological order

anything special ? with anyons
Application

Boundary \leftrightarrow Bulk

Gapped_1, Gapped_2, \ldots
CFT_1, CFT_2, \ldots
\hline
two gapped boundaries
all unitary CFTs
with central charge $c_L = c_R < 1$,
except four cases

Anyon models

Toric code
Application

Boundary of anyon model \leftrightarrow Purely 1D

Stability? Different most relevant perturbation

<table>
<thead>
<tr>
<th>Ising CFT</th>
<th>Transverse Ising model</th>
</tr>
</thead>
<tbody>
<tr>
<td>on boundary of toric code</td>
<td>at critical point</td>
</tr>
<tr>
<td>Majorana mass term</td>
<td>spin operator</td>
</tr>
<tr>
<td>scal. dim. = 1</td>
<td>scal. dim. = $\frac{1}{8}$</td>
</tr>
</tbody>
</table>
Purely 1D system

Low energy description?

Gapped Count states in the ground states

Gapless/critical Conformal field theory (CFT)

- spin-$\frac{1}{2}$ Heisenberg model $\rightarrow SU(2)$ CFT $c = 1$
- Transverse Ising model \rightarrow Ising CFT $\mathcal{M}(3, 4) \quad c = \frac{1}{2}$

predict specific heat $c_T = \frac{1}{2}$ in certain unit

Tricritical Ising model \rightarrow Tricritical Ising CFT $\mathcal{M}(4, 5) \quad c = \frac{7}{10}$

CFT predicts specially discrete values of specific heat for 1d critical models.
1D gapless/ critical system

Universal study of 1d critical system

Minimal models $\mathcal{M}(p, p + 1)$

<table>
<thead>
<tr>
<th>p</th>
<th>c</th>
<th>lattice model</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$\frac{1}{2}$</td>
<td>Ising</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{7}{10}$</td>
<td>Tricritical Ising</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{4}{5}$</td>
<td>Tetracritical Ising, 3-state Potts</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How are they determined?
1+1 d gapless/ critical system

Power Complete spectrum solved, given by partition function on a torus.

\[
Z(\tau, \bar{\tau}) = \text{Tr} \ e^{- (\text{Im} \tau H - i \text{Re} \tau P)} = \sum_{|\phi_i\rangle} \langle \phi_i | e^{- (\text{Im} \tau \epsilon_i - i \text{Re} \tau p_i)} |\phi_i\rangle
\]
1+1d CFT on a torus τ

Re-parametrize the same torus, pick a different spacetime unit cell

\[Z(\tau, \bar{\tau}) \]

\[\mathcal{T} : Z(\tau, \bar{\tau}) \rightarrow Z(\tau + 1, \bar{\tau} + 1) \]

\[S : Z(\tau, \bar{\tau}) \rightarrow Z \left(-\frac{1}{\tau}, -\frac{1}{\bar{\tau}} \right) \]

\[Z(\tau + 1, \bar{\tau} + 1) = Z(\tau, \bar{\tau}) \quad Z(-1/\tau, -1/\bar{\tau}) = Z(\tau, \bar{\tau}) \]

\Rightarrow Modular invariant
What modular invariance can do?

Minimal models $\mathcal{M}(p, p + 1)$

<table>
<thead>
<tr>
<th>p</th>
<th>c</th>
<th>lattice model</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$\frac{1}{2}$</td>
<td>Ising</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{7}{10}$</td>
<td>Tricritical Ising</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{4}{5}$</td>
<td>Tetracritical Ising, 3-state Potts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:</td>
</tr>
</tbody>
</table>
Boundary of anyon models

Proper description: Vector of partition functions

Bulk Boundary
Different anyon Different excitations
\mathbb{Z}_2 topological order on lattice – Toric code

\[H = - \sum_P g_P - \sum_S g_S \]

\[\sigma^x_i \]

\[\sigma^z_i \]
\(\mathbb{Z}_2 \) topological order / Toric code

Bulk simple topological data

- anyon \(i = 1 \ e \ m \ f \)
- self & mutual statistics
 \[T^{\text{top}}_{ij} = \delta_{ij} \bigcirc_{/i} \bigcirc_{j} \]
 \[S^{\text{top}}_{ij} = \bigodot_{/i} \bigodot_{j} \]

\[
T_{\mathbb{Z}_2} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}
\]

\[
S_{\mathbb{Z}_2} = \frac{1}{2} \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{bmatrix}
\]
Effective boundary Hamiltonian of toric code

Toric code boundary Hamiltonian = Transverse Ising model

Bulk: vacuum

Boundary: Start with \(m \)-condensed boundary \(e \sim f \)
Effective Hamiltonian of energy gap \(U + \) hop around

\[
H = -\frac{U}{2} \sum_j \sigma_j^z - J \sum_j \sigma_j^x \sigma_{j+1}^x - \epsilon_0 L
\]

\[
\sigma_i^z = \begin{cases}
1 & \text{empty} \\
-1 & \text{occupied by } e
\end{cases}
\]
Effective boundary Hamiltonian of toric code

Bulk: vacuum

 Boundary: Start with m-condensed boundary

Effective Hamiltonian of e energy gap U + hop around

$$H = -\frac{U}{2} \sum_j \sigma_j^z - J \sum_j \sigma_j^x \sigma_{j+1}^x - \epsilon_0 L$$

$$\sigma_i^z = \begin{cases}
1 & \text{empty} \\
-1 & \text{occupied by } e
\end{cases}$$

Global constraint

Total number of e is even

Boundary condition

$$\prod_j \sigma_j^z = 1$$

$$\sigma_{N+1}^x = \sigma_1^x$$
Effective boundary Hamiltonian of toric code

Bulk: e-sector

Boundary:
- Global constraint
- Total number of e is odd
- Boundary condition

\[
\prod_j \sigma_j^z = -1
\]

\[
\sigma_{N+1}^x = \sigma_1^x
\]
Effective boundary Hamiltonian of toric code

Bulk: m-sector

Boundary:

Global constraint

Number of e is even

Boundary condition

\[\prod_j \sigma_j^z = 1 \]

\[\sigma_{N+1}^x = -\sigma_1^x \]
Boundary of \mathbb{Z}_2 topological order

\[H_{\text{bdy}} = -\frac{U}{2} \sum_j \sigma_j^z - J \sum_j \sigma_i^x \sigma_{i+1}^x \]

<table>
<thead>
<tr>
<th>Bulk</th>
<th>Boundary constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Periodic b.c. \mathbb{Z}_2 even</td>
</tr>
<tr>
<td>e</td>
<td>Periodic b.c. \mathbb{Z}_2 odd</td>
</tr>
<tr>
<td>m</td>
<td>Anti-Periodic b.c. \mathbb{Z}_2 even</td>
</tr>
<tr>
<td>f</td>
<td>Anti-Periodic b.c. \mathbb{Z}_2 odd</td>
</tr>
</tbody>
</table>

available states:

- $e = (1, -1)$
- $m = (-1, 1)$

Bulk Anyon = (\mathbb{Z}_2 flux, \mathbb{Z}_2 charge)

Boundary states = (Bdy condition, charge)
Boundary: vector of partition function

Low energy partition function

\[Z_{\text{anyon}} = \text{Tr}_{\mathcal{H}_a} e^{-\beta H_a} \]

Low temperature limit \(\beta \to \infty \) with fixed \(\frac{\beta}{L} \)

\[|\phi\rangle \text{ is gapped} \implies e^{-\beta E_{|\phi\rangle}} \to 0 \]
\[|\phi\rangle \text{ is gapless} \implies e^{-\frac{\beta}{L} E_{|\phi\rangle}} \]
Boundary partition function of \mathbb{Z}_2 topological order

\[
H_{\text{bdy}} = -\frac{U}{2} \sum_j \sigma_j^z - J \sum_j \sigma_j^x \sigma_{j+1}^x - \epsilon_0 L
\]

\[
Z_{\text{anyon } a} = \text{Tr}_{\mathcal{H}_a} e^{-\beta H_a}
\]

Gapped m-condensed boundary $|J| < \frac{U}{2}$

<table>
<thead>
<tr>
<th>Bulk a</th>
<th>Boundary Z_a</th>
<th>states</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>single ground state $\epsilon_0 = 0$</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>gapped excitation</td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>condensed $\epsilon_m = \epsilon_0$</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>gapped excitation</td>
</tr>
</tbody>
</table>

\[
Z^{\text{m-condensed}} = \begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}
\]

“Smooth boundary”

[Kitaev-Kong '12]
Boundary partition function of \mathbb{Z}_2 topological order

$$H_{\text{bdy}} = -\frac{U}{2} \sum_j \sigma_j^z - J \sum_j \sigma_j^x \sigma_{j+1}^x - \epsilon_0 L$$

$$Z_{\text{anyon } a} = \text{Tr}_{\mathcal{H}_a} e^{-\beta H_a}$$

Gapped boundaries

- $|J| < \frac{U}{2}$
- $J > \frac{U}{2}$

$$Z^{\text{m-condensed}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad Z^{\text{e-condensed}} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

“Smooth edge” \quad “Rough edge”

[Kitaev-Kong '12]
Boundary partition function of \mathbb{Z}_2 topological order

$$Z_{\text{anyon } a} = \text{Tr}_{H_a} e^{-\beta H_a}$$

Gapless boundaries $J = \frac{U}{2}$

Rough answer: transverse Ising model at critical point = Ising CFT

What is Z_a?
Boundary partition function of \mathbb{Z}_2 topological order

Gapless boundaries

$$H_{\text{bdy}} = -\sum_j (\sigma_j^z + \sigma_j^x \sigma_{j+1}^x) - \epsilon_0 L$$

$$Z_{\text{anyon } a} = \text{Tr}_{\mathcal{H}_a} e^{-\beta H_a}$$

- **Gapless excitations** vacuum σ $\psi \bar{\psi}$ μ ψ $\bar{\psi}$

<table>
<thead>
<tr>
<th>Bulk</th>
<th>Boundary constraint</th>
<th>states</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P.b.c. \mathbb{Z}_2 even</td>
<td>vacuum "0", $\psi \bar{\psi}$</td>
</tr>
<tr>
<td>e</td>
<td>P.b.c. \mathbb{Z}_2 odd</td>
<td>σ</td>
</tr>
<tr>
<td>m</td>
<td>AP.b.c. \mathbb{Z}_2 even</td>
<td>μ</td>
</tr>
<tr>
<td>f</td>
<td>AP.b.c. \mathbb{Z}_2 odd</td>
<td>ψ, $\bar{\psi}$</td>
</tr>
</tbody>
</table>

[Levin-Wen '03, unpublished, Chen-Jian-Kong-You-Zheng '19]
Vector of partition functions

Bulk Toric code

Gapless boundaries Ising CFT

\[
\begin{bmatrix}
Z_1 \\
Z_e \\
Z_m \\
Z_f
\end{bmatrix}
=
\begin{bmatrix}
|\chi_1|^2 + |\chi_\psi|^2 \\
|\chi_\sigma|^2 \\
|\chi_\mu|^2 \\
\chi_\psi \bar{\chi}_1 + \chi_1 \bar{\chi}_\psi
\end{bmatrix}
\]

Gapped boundaries

\[
Z^{e-\text{cond}} = [1 1 0 0]^T \\
Z^{m-\text{cond}} = [1 0 1 0]^T
\]

A vector of partition functions describe various boundaries of anyon model. vector index = bulk anyon
Construct case by case?

Boundary \(\leftrightarrow\) **Bulk**

- More CFTs if add 4-spin interactions?
- \(U(1)\) CFT?
- Toric code
 \[
 K = \begin{bmatrix}
 0 & 2 \\
 2 & 0
 \end{bmatrix}
 \]

Look for

(i) A **schematic** way, given a TO/CFT pair, check if there is a solution of vector of partition function.

(ii) **Independent of particular microscopic construction**

(iii) Something **universal** about boundary/anyonic bulk correspondence?
Hint from Ising CFT ⇔ Toric code

Under modular transformation?

\[Z_a(\tau, \bar{\tau}) = \sum_{ij} \chi_i(\tau) \, M^a_{ij} \, \bar{\chi}_j(\bar{\tau}) \]

\[
\chi_i(\tau + 1) = T^\text{CFT}_{ij} \, \chi_j(\tau) \\
T^\text{ls} = e^{-i \frac{2\pi}{24}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i2\pi \frac{1}{2}} & 0 \\ 0 & 0 & e^{i2\pi \frac{1}{16}} \end{bmatrix}
\]

\[Z_a(\tau + 1, \bar{\tau} + 1) = \sum_{ij} \bar{\chi}_i(\bar{\tau}) \, \tilde{M}^a_{ij} \, \chi_j(\tau) \]

\[\tilde{M}^a_{ij} = T^\text{CFT} \, M^a_{ij} \, T^\text{CFT} \]
Hint from Ising CFT \leftrightarrow Toric code

Under modular transformation?

$$Z_{\text{Ising}}^a(\tau + 1, \bar{\tau} + 1) = T^{\text{toric code}}_{ab} Z_b(\tau, \bar{\tau})$$
Hint from Ising CFT \leftrightarrow Toric code

Under modular transformation?

\[
Z_{\text{Ising}}(\tau + 1, \bar{\tau} + 1) = T_{\text{toric code}}^{ab} Z_b(\tau, \bar{\tau}) \\
Z_{\text{Ising}}(-1/\tau, -1/\bar{\tau}) = S_{\text{toric code}}^{ab} Z_b(\tau, \bar{\tau})
\]

Boundary \leftrightarrow Bulk

\[
Z_a(\tau) \quad \text{universal anyon data}
\] under modular transformation
How general? Gapped boundaries

Gapped boundaries
\[Z^{e-\text{cond}} = [1 \ 1 \ 0 \ 0]^T \quad Z^{m-\text{cond}} = [1 \ 0 \ 1 \ 0]^T \]

\[T^{\text{toric code}}_{ab} Z_b = Z_a \]
\[S^{\text{toric code}}_{ab} Z_b = Z_a \]

Only two independent eigenvectors
How general? A Luttinger liquid boundary

Bulk Toric code/\mathbb{Z}_2 topological order

described by $U(1)$ Chern-Simons theory $K = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$

Boundary $U(1)$ CFT at level 4 $c = 1$ primaries $l = 0, 1, 2, 3$

$\begin{bmatrix} Z_1 \\ Z_e \\ Z_m \\ Z_f \end{bmatrix} = \begin{bmatrix} |\chi_0|^2 + |\chi_2|^2 \\ |\chi_1|^2 + |\chi_3|^2 \\ \chi_1 \bar{\chi}_3 + \chi_3 \bar{\chi}_1 \\ \chi_0 \bar{\chi}_2 + \chi_2 \bar{\chi}_0 \end{bmatrix}$

$Z^{(1)}_{\tau + 1, \bar{\tau} + 1} = T_{\text{toric code}}^{ab} Z_b(\tau, \bar{\tau})$

$Z^{(1)}_{-1/\tau, -1/\bar{\tau}} = S_{\text{toric code}}^{ab} Z_b(\tau, \bar{\tau})$
A 1 + 1d theory with non-invertible anomaly

1. defined on a space-time torus τ, it has a multi-component partition function

\[Z_\alpha(\tau, \bar{\tau}) \]

2. Under torus re-parametrization $T : \tau \rightarrow \tau + 1$, $S : \tau \rightarrow -\frac{1}{\tau}$, $Z_\alpha(\tau, \bar{\tau})$ transform covariantly according to 2+1d topological data

\{anyon a\} anyon self-statistics T^{top} mutual statistics S^{top}

\[T^{\text{top}}_{ab} Z_b(\tau, \bar{\tau}) = Z_b(\tau + 1, \bar{\tau} + 1) \]

\[S^{\text{top}}_{ab} Z_b(\tau, \bar{\tau}) = Z_b \left(-\frac{1}{\tau}, -\frac{1}{\bar{\tau}} \right) \]

Non-invertible anomaly = canceled by the 2 + 1d (non-invertible) topological order
An intuition about T transformation

Rotate 2π and glue back

Purely 1D ring nothing change
An intuition about T transformation

Rotate 2π and glue back

A boundary ring anony self-rotate and accumulate a phase
Construct case by case?

\begin{align*}
\text{Boundary} & \leftrightarrow \quad \text{Bulk} \\
\text{More CFTs if add 4-spin interactions?} & \quad \text{Toric code} \\
U(1) \text{ CFT?} & \quad K = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}
\end{align*}

Look for

(i) A \textbf{schematic} way, given a \text{TQFT/CFT} pair, check if there is a solution of vector of partition function.

(ii) \textbf{Independent of particular microscopic construction}

(iii) Something \textbf{universal} about boundary/anyonic bulk correspondence?
CFT/TO pair

\[T_{ab}^{\text{top}} (T^{CFT})^*_{ij} M_{bj} = M_{ai} \]
\[S_{ab}^{\text{top}} (S^{CFT})^*_{ij} M_{bj} = M_{ai} \]

Boundary \leftrightarrow Bulk
Pick a CFT Fix an anyon model

Solve an eigenvector problem for M_{ai}, a labels anyon, i labels primaries.
CFT/TO pair

Boundary \leftrightarrow Bulk

Pick a CFT Fix an anyon model

Solve an eigenvector problem for M_{ai}, a labels anyon, i labels primaries.

\[
T^{\text{top}}_{\text{ab}} \ (T^{\text{CFT}})_{ij}^* \ M_{bj} = M_{ai}
\]

\[
S^{\text{top}}_{\text{ab}} \ (S^{\text{CFT}})_{ij}^* \ M_{bj} = M_{ai}
\]
More critical boundaries of toric code

Tricritical Ising $\mathcal{M}(4, 5)$ \hspace{1cm} $c_L = c_R = \frac{7}{10}$

\[
\begin{array}{cccccc}
 l & 1 & \sigma & \sigma' & \epsilon & \epsilon' & \epsilon'' \\
 h_f & 0 & \frac{3}{80} & \frac{7}{16} & \frac{1}{10} & \frac{3}{5} & \frac{3}{2}
\end{array}
\]

\[
\begin{pmatrix}
 Z_1 \\
 Z_e \\
 Z_m \\
 Z_f
\end{pmatrix} =
\begin{pmatrix}
 |\chi_0|^2 + |\chi_{\frac{1}{10}}|^2 + |\chi_{\frac{3}{5}}|^2 + |\chi_{\frac{3}{2}}|^2 \\
 |\chi_{\frac{7}{16}}|^2 + |\chi_{\frac{3}{80}}|^2 \\
 |\chi_{\frac{7}{16}}|^2 + |\chi_{\frac{3}{80}}|^2 \\
 \chi_0 \tilde{\chi}_{\frac{3}{2}} + \chi_{\frac{1}{10}} \tilde{\chi}_{\frac{3}{5}} + \chi_{\frac{3}{5}} \tilde{\chi}_{\frac{1}{10}} + \chi_{\frac{3}{2}} \tilde{\chi}_0
\end{pmatrix}
\]
All minimal models, except 4 cases
\((\mathcal{M}(p, p + 1) \text{ with } p = 17, 18, 29, 30) \)
can be the gapless boundary of \(\mathbb{Z}_2 \) topological order.
Prediction

Stability: most relevant term in the vacuum sector Z_1.

\[
\begin{bmatrix}
Z_1 \\
Z_e \\
Z_m \\
Z_f
\end{bmatrix}
=
\begin{bmatrix}
|\chi_1|^2 + |\chi_\psi|^2 \\
|\chi_\sigma|^2 \\
|\chi_\mu|^2 \\
\chi_\psi \bar{\chi}_1 + \chi_1 \bar{\chi}_\psi
\end{bmatrix}
\]

Compare with 1d Ising chain \(Z = |\chi_1|^2 + |\chi_\sigma|^2 + |\chi_\psi|^2 \)

In general more stable than CFT in purely 1D, since some excitations are projected out.
Example: Double semion topological order

Bulk

\[
\begin{array}{cccc}
 & i & 1 & s & s^* & b \\
\theta_i & 1 & e^{i2\pi\frac{1}{4}} & e^{-i2\pi\frac{1}{4}} & 1 \\
\end{array}
\]

\[
T^{\mathbb{Z}_2} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & i & 0 & 0 \\
 0 & 0 & -i & 0 \\
 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
S^{\mathbb{Z}_2} = \frac{1}{2} \begin{bmatrix}
 1 & 1 & 1 & 1 \\
 1 & -1 & 1 & -1 \\
 1 & 1 & -1 & -1 \\
 1 & -1 & -1 & 1 \\
\end{bmatrix}
\]

Boundary

Gapped \(Z^T = [1
0
0
1] \) boson condensed
Bulk

Effective theory $U(1)$ Chern-Simons theory with a $K = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$ matrix

Boundary $u(1)_2$ $c_L = c_R = 1$

\[
\begin{array}{ccc}
I & 0 & 1 \\
\hline \\
h_1 & 0 & \frac{1}{4}
\end{array}
\]

\[
\begin{pmatrix}
Z_1 \\
Z_s \\
Z_s^* \\
Z_b
\end{pmatrix} =
\begin{pmatrix}
|\chi_0|^2 \\
\chi_1 \bar{\chi}_0 \\
\chi_0 \bar{\chi}_1 \\
|\chi_1|^2
\end{pmatrix}
\]

Prediction No relevant perturbation, from $Z_1 = |\chi_0|^2$.

exists marginal perturbation in $|\chi_0|^2$
Boundaries of double semion topological order

For a RCFT to be the boundary theory of a topological order, it must have primary fields J with

$$e^{i2\pi(h'_L-h'_R)} = \theta_j$$

For double semion bulk, no minimal model solution for $p < 7$. Gapless boundaries of 2+1D double semion topological order must have central charge

$$c \geq \frac{25}{28}$$
A basis transformation

Example: \mathbb{Z}_2 topological order

\[
Z^{ls} = \begin{bmatrix}
|x_1|^2 + |x_\psi|^2 \\
|x_\sigma|^2 \\
|x_\mu|^2 \\
x_\psi \bar{x}_1 + \chi_1 \bar{x}_\psi
\end{bmatrix}
\]

\[
M = \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}
\]

\[
\rightarrow Z^{ls'} = \begin{bmatrix}
|x_1|^2 + |x_\sigma|^2 + |x_\psi|^2 \\
|x_1|^2 - |x_\sigma|^2 + |x_\psi|^2 \\
x_\psi \bar{x}_1 + \chi_1 \bar{x}_\psi + |x_\mu|^2 \\
-x_\psi \bar{x}_1 - \chi_1 \bar{x}_\psi + |x_\mu|^2
\end{bmatrix}
\]

\[
S' = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
T' = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
A CFT with an anomaly free \mathbb{Z}_2 symmetry
S', T' orbit
An inverse basis transformation

\[
\begin{bmatrix}
Z_1 \\
Z_e \\
Z_m \\
Z_f
\end{bmatrix} = M^{-1}
\]

Take-away Given any modular invariant CFT with an anomaly free \(\mathbb{Z}_2 \) symmetry, there exists a modular covariant CFT as the boundary of \(\mathbb{Z}_2 \) topological order.
Minimal model $\mathcal{M}(p, p + 1)$

- All minimal models, except 4 cases\(^1\) can be the gapless boundary of \mathbb{Z}_2 topological order. The most stable one has central charge $c = \frac{1}{2}$.
- The critical 3-Potts model and tricritical 3-Potts model can be the gapless boundary of \mathbb{Z}_3 topological order and S_3 topological order.
- The gapless boundary of all other (untwisted) topological order with discrete gauge group G has central charge $c \geq 1$.
Non-invertible anomaly and Anyon models

\[Z_a(\tau) \]

(flux, charge)

(Bdy condition, charge)

\[Z_a(\tau + 1) = T_{ab}^{\text{top}} Z_b \]

\[Z_a(-1/\tau) = S_{ab}^{\text{top}} Z_b \]
Non-invertible anomaly

Good for

- **Schematic**: TO/CFT pair through eigenvector equation
- **Universal**: Z_2 anomaly free CFT \Rightarrow Toric code boundary

Boundary of anyon models are more stable
Open remarks

- Examples are known yet that a faithful set of gapless boundary theories requires the mapping class group transformation on higher genus?
- Lattice construction for gapped and gapless boundaries?
- Relation between invertible and non-invertible anomaly (to appear)