**Collection Number**C19010

**Collection Date**-

**Collection Type**Course

PSI 2018/2019 - Quantum Information Review (Gottesman)

## PSI 2018/2019 - Quantum Information Review - Lecture 15

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Quantum channel capacity. Coherent information. LOCC. Measures of entanglement.

## PSI 2018/2019 - Quantum Information Review - Lecture 14

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Von Neuman entropy. Classical data compression. Shannon's source coding theorem. Quantum data compression and Schumacher compression. Shannon's channel compression theorem. Mutual information.

## PSI 2018/2019 - Quantum Information Review - Lecture 13

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Quantum key distribution. BB84 protocol. 'Man-in-the-middle attack.'

## PSI 2018/2019 - Quantum Information Review - Lecture 12

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Stabilizer codes. The threshold theorem of fault-tolerant quantum computing.

## PSI 2018/2019 - Quantum Information Review - Lecture 11

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Quantum error correcting codes. 3-qubit and 9-qubit codes.

## PSI 2018/2019 - Quantum Information Review - Lecture 10

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Grover's algorithm.

## PSI 2018/2019 - Quantum Information Review - Lecture 9

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Shor's algorithm continued. The quantum Fourier transform circuit.

## PSI 2018/2019 - Quantum Information Review - Lecture 8

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Factoring. RSA cryptography. Shor's algorithm.

## PSI 2018/2019 - Quantum Information Review - Lecture 7

Daniel Gottesman
Perimeter Institute for Theoretical Physics

BQP. Classical and quantum oracles. Duetsch-Jozsa algorithm.

## PSI 2018/2019 - Quantum Information Review - Lecture 6

Daniel Gottesman
Perimeter Institute for Theoretical Physics

Complexity. The halting problem. Church-Turing thesis. P and NP.