Title: An introduction to twistors Course Description: Twistor theory, introduced by Penrose many years ago, is a way to reformulate massless fields on four-dimensional space-time in terms of an auxiliary 6-dimensional complex manifold, called twistor space. This course will introduce twistor space and the Penrose correspondence (relating fields on twistor space and space-time), at both classical and quantum levels. We will discuss the twistor realization of self-dual Yang-Mills theory and of self-dual gravity. If time permits we will discuss the connection between twistors and celestial holography.
Format results
-
Mathematical Physics Lecture (230403)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040042 -
Mathematical Physics Lecture (230404)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040075 -
Mathematical Physics Lecture (230405)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040043 -
Mathematical Physics Lecture (230404)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040076 -
Mathematical Physics Lecture (230412)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040046 -
Mathematical Physics Lecture (230414)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040047 -
Mathematical Physics Lecture (230417)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040048 -
Mathematical Physics Lecture (230404)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040077 -
Mathematical Physics Lecture (230419)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040049 -
Mathematical Physics Lecture (230421)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040050 -
Mathematical Physics Lecture (230501)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23050010 -
Mathematical Physics Lecture (230503)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23050011