Modifications of the initial-state of the inflaton field can induce a departure from Gaussianity and leave a testable imprint on the higher order correlations of the CMB and large scale structures in the Universe. I will discuss general vacuum state modifications in the case of a canonical single-field action, after adding a dimension 8 higher order derivative term, and DBI models of inflation. Observed bounds on local and equilateral non-Gaussianities, even though they correspond to template shapes that are far from optimal, can lead to constraints that are already competing to those derived from the power spectrum alone, due to enhancement effects. We emphasize that the construction and application of especially adapted templates could lead to significant improvements in the CMB bispectrum constraints on modified initial states.
Gauge theories with deformed products of fields in the lagrangian
constitute an interesting generalization of the gauge/string duality.
We review a systematic procedure to find the string duals of such
theories, called the TsT transformation, and illustrate its properties
by means of a few examples.
In my talk I will provide an overview of the applications of Wilson's
modern renormalization group (RG) to problems in quantum gravity. I will first discuss the development of the RG for continuum gravity within the framework of Feynman's covariant path integral approach. Then I will discuss a number of issues that arise when implementing the path integral approach with an explicit lattice UV regulator, and later how non-perturbative RG flows and universal non-trivial scaling dimensions can in principle be extracted from these calculations. Towards the end I will discuss recent attempts at formulating RG flows for gravitational couplings within the framework of a set of manifestly covariant, but non-local, effective field equations suitable for quantum cosmology.
"A Hamiltonian action of a Lie group on a symplectic manifold $(M,\omega)$ gives rise to a gauge theoretic deformation of the
Cauchy-Riemann equations, called the symplectic vortex equations. Counting solutions of these equations over the complex plane leads to a quantum version of the Kirwan map. In joint work with Christopher Woodward, we interpret this map as a weak morphism of cohomological field theories."
This talk will discuss, illustrated by a toy example, how to construct "higher-algebraic" quantum field theories using groupoids. In particular, the groupoids describe configuration spaces of connections, together with their gauge symmetries, on spacetime, space, and boundaries of regions in space. The talk will describe a higher-algebraic "sum over histories", and how this construction is related to usual QFT's, and particularly the relation to the case of the Chern-Simons theory.
The space of regular noncommutative algebras includes regular graded Clifford algebras, which correspond to base point free linear systems of quadrics in dimension n in P^n. The schemes of linear modules for these algebras can be described in terms of this linear system. We show that the space of line modules on a 4 dimensional algebra is an Enriques surface called the Reye congruence, and we extend this result to higher dimensions.
The classical "split" rational R-matrix Poisson bracket structure on the space of rational connections over the Riemann sphere provides a natural setting for studying deformations. It can be shown that a natural set of Poisson commuting spectral invariant Hamiltonians, which are dual to the Casimir invariants of the Poisson structure, generate all deformations which, when viewed as nonautonomous Hamiltonian systems, preserve the generalized monodromy of the connections, in the sense of Birkhoff (i.e., the monodromy representation, the Stokes parameters and connection matrices). These spectral invariants may be expressed as residues of the trace invariants of the connection over the spectral curve. Applications include the deformation equations for orthogonal polynomials having "semi-classical" measures. The $\tau$ function for such isomonodromic deformations coincides with the Hankel determinant formed from the moments, and is interpretable as a generalized matrix model integral. They are also related to Seiberg-Witten invariants. (This talk is based in part on joint work with: Marco Bertola, Gabor Pusztai and Jacques Hurtubise)
I will discuss the metric behavior of the Kahler-Ricci flow on Hirzebruch surfaces assuming that the initial metric is invariant under a maximal compact subgroup of the automorphism group. I will describe how, in the sense of Gromov-Hausdorff, the flow either shrinks to a point, collapses to P^1 or contracts an exceptional divisor. This confirms a conjecture of Feldman-Ilmanen-Knopf. This is a joint work with Jian Song.
"In this joint work with Jingyi Chen and Weiyong He, we prove
existence of longtime smooth solutions to mean curvature flow of entire
Lipschitz Lagrangian graphs. A Bernstein type result for translating
solitons is also obtained."
I will describe some combinatorial problems which arise when computing various types of partition functions for the Donaldson-Thomas theory of a space with a torus action. The problems are all variants of the following: give a generating function which enumerates the number of ways to pile n cubical boxes in the corner of a room. Often the resulting generating functions are nice product formulae, as predicted by the recent wall-crossing formulae of Kontsevich-Soibelman. There are now a variety of techniques, both geometric and combinatorial, to compute these formula. My work uses the entirely combinatorial techniques, namely vertex operators and the planar dimer model; these techniques can be applied essentially "bare-handed" and rely very little upon the underlying algebraic geometry.