We present a simple mechanism for obtaining large-field inflation, and hence a gravitational wave signature, from string theory compactified on twisted tori. For Nil manifolds, we obtain a leading inflationary potential proportional to phi^(2/3) in terms of the canonically normalized field phi, yielding predictions for the tilt of the power spectrum and the tensor-to-scalar ratio, $n_sapprox 0.98$ and $rapprox 0.04$ with 60 e-foldings of inflation; we note also the possibility of a variant with a candidate inflaton potential proportional to phi^(2/5). The basic mechanism involved in extending the field range -- monodromy in D-branes as they move in circles on the manifold -- arises in a more general class of compactifications, though our methods for controlling the corrections to the slow-roll parameters require additional symmetries.
We discuss a quantum corrected inflation scenario driven by a generic GUT or Standard Model type particle model, whose scalar field playing the role of an inflaton has a strong non-minimal curvature coupling. We show that currently widely accepted bounds on the Higgs mass falsify the suggestion of [arXiv:0710.3755] (the work underestimating the role of radiative corrections) that the Standard Model Higgs boson can serve as the inflaton. However, if the Higgs mass could be raised to 216 GeV, then the Standard Model could generate the inflationary scenario matching the CMB data with $n_ssimeq 0.93$ and a very low tensor to scalar perturbation ratio $rsimeq 0.0005$.
The cosmological constant problem and the compatibility of gravity with quantum mechanics are the two most pressing problems in all of gravitational theory. While string theory nicely addresses the latter, it has so far failed to provide any compelling solution to the former. On the other hand, while conformal gravity nicely addresses the cosmological constant problem [by naturally quenching the amount by which the cosmological constant gravitates rather than by quenching the cosmological constant itself -- Mannheim, Prog. Part. Nuc. Phys. 56, 340 (2006)], the fourth order derivative conformal theory has long been thought to possess a ghost when quantized. However, it has recently been shown by Bender and Mannheim [Phys. Rev. Lett. 100, 110402 (2008)] that not only do theories based on fourth order derivative equations of motion not have ghosts, they actually never had any to begin with, with the apparent presence of ghosts being due entirely to treating operators which were not Hermitian on the real axis as though they were. When this is taken care of via an underlying PT symmetry that such theories are found to possess, there are then no ghosts at all and the theory is fully unitary. Conformal gravity is thus advanced as a fully consistent four-dimensional alternative to ten-dimensional string theory.
In SUGRA flavour models, a total sequestering is not possible and an irreducible amount of flavour and CP violation is essentially unavoidable, which renders many flavour models testable in the near future experiments.
WIMP dark matter candidates chi^0 have interesting signatures for direct and indirect detection in regimes where there is a near degeneracy with a heavier charged state chi^{pm}, as occurs for example along the boundary of the coannihilation strip in the CMSSM. For small splittings of O(10) MeV, the scattering of WIMPs off nuclei may be dominated by inelastic recombination processes mediated by the formation of (chi^- N) bound states, leading for example to a distinct signature for direct detection. I will discuss these and other resonant processes that distinguish the detection signatures of this class of WIMP scenarios.
Working in the weak tachyon region of a condensing tachyon background, we find the modified equations of motion for massless strings with conformal perturbation theory. We then estimate the backreaction on the background dilaton. In large (supercritical) dimensions, we find that the backreaction can be significant in a large region of spacetime.
Parametric resonance, also known as preheating, is a plausible mechanism for bringing about the transition between the inflationary phase and a hot, radiation dominated universe. This epoch results in the rapid production of heavy particles far from thermal equilibrium and has the potential to source a significant stochastic background of gravitational radiation. Here, I present a numerical algorithm for computing the contemporary power spectrum of gravity waves generated in this post-inflationary phase transition for a large class of scalar-field driven inflationary models. I will present the results of this calculation for a number of inflationary models and discuss the (potential) observability of these models
We show the nature of sequestering hidden sector in five-dimensional supergravity models, where a negative vacuum energy of the nonperturbative modulus potential is canceled by a dynamically generated F-term in the hidden sector. Soft supersymmetry breaking terms are explicitly shown in the case that both the visible and the hidden sector is quasi-localized in the extra dimension.
The phenomenology of TeV-scale physics can be modified by the existence of scale-invariant \'unparticle\' fields that can couple to the standard model sector. In particular, it has been shown that unparticles can alter gravitational interactions in a similar fashion to extra dimensions. Observable results from this mechanism -- most notably mini-black hole formation -- will be discussed, and methods of differentiating unparticles from extra dimensional models will be addressed.
Many string theorists and cosmologists have recently turned their attention to building and testing string theory models of inflation. One of the main goals is to find novel features that could distinguish stringy models from their field theoretic counterparts. This is difficult because, in most examples, string theory is used to derived an effective theory operating at energies well below the string scale. However, since string theory provides a complete description of dynamics also at higher energies, it may be interesting to construct inflationary models which take advantage of this distinctive feature. I will discuss recent progress in this direction using p-adic string theory - a toy model of the bosonic string for which the full series of higher dimensional operators is known explicitly - as a playground for studying string cosmology to all order in $alpha\'$. The p-adic string is a nonlocal theory containing derivatives of all orders and this structure is also ubiquitous in string field theory. After discussing the difficulties (such as ghosts and classical instabilities) that arise in working with higher derivative theories I will show how to construct generic inflationary models with infinitely many derivatives. Novel features include the possibility of realizing slow roll inflation with a steep potential and large nongaussian signatures in the CMB.
If inflation is to be considered in an unbiased way, as possibly originating from one of a wide range of underlying theories,then observations need not be simply applied to reconstructing the inflaton potential, V(phi), or a specific kinetic term, as in DBI inflation, but rather to reconstruct the inflationary action in its entirety. I will discuss the constraints that can be placed on a generalsingle field action from measurements of the primordial scalar and tensor fluctuation power spectra and non-Gaussianities. I will also briefly present the flow equation formalism for reconstructing a general inflationary Lagrangian, in a general gauge, that reduces to canonical and DBI inflation in a specific gauge.