This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
-undergraduate quantum mechanics
-basics of classical gauge field theories
-basic general relativity
-hamiltonian and lagrangian mechanics
-basics of lie algebras
This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
-undergraduate quantum mechanics
-basics of classical gauge field theories
-basic general relativity
-hamiltonian and lagrangian mechanics
-basics of lie algebras
While modern theories lavishly invoke several spatial dimensions within models that seek to unify relativity theory and quantum mechanics, none seems to consider the possibility that a yet-unfamiliar aspect of time may do the work. I introduce the notion of Becoming and then consider its consequences for physical theory. Becoming portrays a possible aspect of time that is "curled" very much like the extra spatial dimensions in superstring theories. Within the resulting picture of spacetime, some fundamental aspects of quantum mechanics, special and general relativity, thermodynamics and modern cosmology fit in very naturally. The proposed model is not yet a scientific theory as it still lacks a rigorous formalism and experimental predictions, yet it points out an entire family of possible theories that merit serious consideration.
I discuss the backreaction of inhomogeneities on the expansion of the universe. The average behaviour of an inhomogeneous spacetime is not given by the Friedmann-Robertseon-Walker equations. The new terms in the exact equations hold the possibility of explaining the observed acceleration without a cosmological constant or new physics. In particular, the coincidence problem may be solved by a connection with structure formation.
We express the total equation of state parameter of a spatially flat Friedman-Robertson-Walker universe in terms of derivatives of the red-shift dependent spin-weighted angular moments of the two-point correlation function of the three dimensional cosmic shear. In the talk I will explain all the technical terms in the first sentence, I will explain how such an expression is obtained and highlight its relevance for determining the expansion history of the universe.
I will investigate the creation and detection of multipartite entangled states in systems of ultracold neutral atoms trapped in an optical lattice. These setups are scalable, highly versatile and controllable at the quantum level. Thus they provide an ideal test bed for studying the properties of multipartite entangled states. I will first present methods exploiting incoherent dynamics for initializing an atomic quantum register. The immersion of an optical lattice in a Bose-Einstein condensate leads to spontaneous emission of phonons. This process can be used for irreversibly loading and cooling atoms within the lowest Bloch band of the lattice. I will describe loading and cooling schemes based on this mechanism and compare them to conventional loading schemes. I will then show how coherent dynamics in a very strongly interacting 1D optical lattice setup can be used for the efficient generation of arbitrary graph states in the atomic quantum register. This system can be mapped onto an XY spin chain which itself is equivalent to a system of non-interacting fermions. By exploiting the anticommutation relations between these fictitious fermions I will discuss how any graph state can be realized in an efficient and robust way. In the final part of my talk I will present a practical method for detecting and characterizing multipartite entangled states in atomic quantum registers. This scheme is based on measuring violations of entropic inequalities using simple quantum networks involving only two copies of the quantum state under consideration. I will investigate the performance of this method under realistic conditions taking into account the most common sources of experimental errors.
Neutrinos are the big unknown in Particle Physics. Since their very beginning they behaved strangely. However, in the last decade experiments were able to solve some of their secrets. The talk will review the current experimental status of neutrino experiments and give an outlook on future activities.
The recently released WMAP 3-year data on the anisotropy and polarization of the Cosmic Microwave Background is a milestone in cosmology. For the first time, it is possible to rule out popular models of inflation in the early universe. However, the WMAP3 data contain interesting hints which indicate that it may be too early to declare a "slam dunk" for simple single-field models of inflation. I will comment on the successes and the limitations of the new data in the context of inflationary model-building, and discuss the next generation of theoretical tools which will be necessary to make sense of future high-precision data.