This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
-undergraduate quantum mechanics
-basics of classical gauge field theories
-basic general relativity
-hamiltonian and lagrangian mechanics
-basics of lie algebras
This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
-undergraduate quantum mechanics
-basics of classical gauge field theories
-basic general relativity
-hamiltonian and lagrangian mechanics
-basics of lie algebras
This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
-undergraduate quantum mechanics
-basics of classical gauge field theories
-basic general relativity
-hamiltonian and lagrangian mechanics
-basics of lie algebras
I will discuss phenomenological aspects on N=1, four-dimensional Type IIB string theory compactifications with all moduli stabilised. In particular, I will review a class of compactifications with exponentially large volumes of the Calabi-Yau manifold and derive explicit formulae for bulk and D3/D7 moduli masses. Then I will show what patterns of soft supersymmetry breaking terms can arise after renormalisation group running to the weak scale.
This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
-undergraduate quantum mechanics
-basics of classical gauge field theories
-basic general relativity
-hamiltonian and lagrangian mechanics
-basics of lie algebras
This is an introduction to background independent quantum theories of
gravity, with a focus on loop quantum gravity and related approaches.
Basic texts:
-Quantum Gravity, by Carlo Rovelli, Cambridge University Press 2005 -Quantum gravityy with a positive cosmological constant, Lee Smolin,
hep-th/0209079
-Invitation to loop quantum gravity, Lee Smolin, hep-th/0408048 -Gauge fields, knots and gravity, JC Baez, JP Muniain
Prerequisites:
-undergraduate quantum mechanics
-basics of classical gauge field theories
-basic general relativity
-hamiltonian and lagrangian mechanics
-basics of lie algebras
I will discuss a toy theory that reproduces a wide variety of qualitative features of quantum theory for degrees of freedom that are continuous. The ontology of the theory is that of classical particle mechanics, but it is assumed that there is a constraint on the amount of knowledge that an observer may have about the motional state of any collection of particles -- Liouville mechanics with an epistemic restriction. The formalism of the theory is determined by examining the consequences of this "classical uncertainty principle" on state preparations, measurements, and dynamics. The result is a theory of hidden variables, although it is not a hidden variable model of quantum theory because it is both local and noncontextual. Despite admitting a simple classical interpretation, the theory also exhibits the operational features of Bohr's notion of complementarity. In fact, it includes all of the features of quantum mechanics to which Bohr appeals in his response to EPR. This theory demonstrates, therefore, that Bohr's arguments fail as a defense of the completeness of quantum mechanics. Joint work with Stephen Bartlett and Terry Rudolph