In modern astronomy, artificial intelligence (AI) is increasingly utilized to analyze large volumes of data, significantly reducing the need for human computational resources and time. Machine learning (ML) techniques are at the forefront of revealing astronomical mysteries by analyzing observed data. Here, we will introduce the application of machine learning to Intensity Interferometry (II) data for high-resolution optical astronomy, aiming to overcome the limitations of traditional image reconstruction methods. In this presentation, we demonstrate successful image reconstruction of a fast-rotating star using conditional Generative Adversarial Networks (cGANs), a supervised machine learning approach. Simulations of II are based on an assembly of four telescopes similar to existing arrays. However, the sensitivity of the signal and high resolution are expected to improve with additional baselines. It makes the current and future Cherenkov Telescope Array Observatory (CTAO) an ideal candidate for II applications. Our approach is highly relevant and innovative, addressing key challenges in phase reconstruction and proposing novel solutions that could revolutionize high-resolution imaging in astronomy.
Even with dense sampling of the uv plane intensity correlations only contain half the information required to reconstruct an image. Intensity correlations do contain the full information of the image power spectrum and therefore of the image 2-point correlation function. With some practice one can gain intuitive understanding in interpreting 2-point correlation function "images". This is illustrated with both toy examples and modeling of real astronomical images. In some assumptions one can even interpret these 2-point correlation function "images" with only a few baselines.
With the observation of gravitational waves (GW's) at high, kilohertz frequencies by LIGO and the evidence for GW's at low, nanohertz frequencies from NANOGrav there is a new emphasis on exploring the GW landscape at intermediate frequency ranges. Beyond the two measurement methods used in these observations, i.e. laser metrology in LIGO and pulsar timing offsets in NANOGrav, we have been developing a third approach of observing astrometric GW signatures, which is very well suited to the intermediate microhertz frequency range. While astrometric GW observations have been discussed in the context of survey missions, e.g. GAIA, this presentation will exhibit a potentially superior approach using long baseline two-photon interferometry, with both space-based and ground-based platforms. The practicalities of a near-future experiment will be particularly highlighted
I present an overview of the work I have done over the last few years on the phase space structure of gauge theories in the presence of boundaries. Starting with primers on the covariant phase space and symplectic reduction, I then explain how their generalization when boundaries are present fits into the reduction-by-stages framework. This leads me to introduce the concept of (classical) superselection sectors, whose physical meaning is clarified by a gluing theorem. Applying the framework developed this far to a null hypersurface, I then discuss how the extension of the Ashtekar-Streubel symplectic structure by soft modes emerges naturally, and how electric memory ties to superselection. If time allows, and depending on the audience’s interests, I will finally compare reduction-by-stages with the edge-mode formalism or discuss its relation to dressings and “gauge reference frames”. An overarching theme will be the nonlocal nature of gauge theories. This seminar is based on work done with Gomes and Schiavina.
References:
The general framework: 2207.00568
Null Yang-Mills: 2303.03531
Gluing: 1910.04222
A pedagogical introduction: 2104.10182
Dressings and reference frames: 1808.02074, 2010.15894, 1608.08226
Accretion flows aroud black-holes, neutron stars or white dwarfs are studied since almost 60 years. Although they are ubiquitous and somewhat similar over scales reaching billions in mass and size, their study has been limited because they remain unresolved point like sources in the optical/ultraviolet and X-rays, where they emit. Two main modes of accretion have been identified in Active Galactic Nuclei. In most sources the accretion rate is low and a high pressure, low density, low collision rate, optically thin, radiatively inefficient, two temperature plasma can form (Shapiro 1976; Narayan & Yi 1994,1995). This solution is stable only for low luminosities (<1% LEDD). The Event Horizon Telescope has recently resolved such flows in Sgr A and M87, confirmed several aspects of the model and could detect particles accelerated close to the horizon of Sgr A (Wielgus, 2022) a likely signature of the Blandford-Znajek (1977) process. When the accretion rate is higher, momentum can be dissipated by viscosity and the flow proceeds via geometrically thin disk-shaped structures. These accretion disks provide feedback to their environment by accelerating winds and launching jets in their central regions. The apparent size of accretion disks are of the order of 1-40µarcsec in nearby quasars, Seyfert galaxies and galactic cataclysmic variables and of 0.1-1µarcsec in of low mass X-ray binaries in our Galaxy. Hanbury-Brown & Twiss (1954) invented intensity interferometry and measured the size of some bright stars by correlating the arrival times of photons detected by two optical telescopes. The physics has been explained as a quantum effect in the early 60s (Fano 1961) and has triggered the development of quantum optics (Glauber 1963). Its root is found in the quantum theory of statistical fluctuations in an ideal gas (Einstein 1925). The achievable signal-to-noise depends on the telescope size, the detector time resolution, and the number of spectral channels observed simultaneously. Extremely large telescope and 10ps resolution single photon detectors bring the key improvements to reach in the optical angular resolutions better than these achieved in the radio by the Event Horizon Telescope and to obtain the first images of accretion disks around galactic and extragalactic compact objects, a breakthrough.
I will present the goals and the status of the QUASAR project, which started one year ago, aiming at bringing a 10ps resolution optical spectrometer on very large telescope.