Mark Wise is the John A. McCone Professor of High Energy Physics at the California Institute of Technology. He has conducted research in elementary particle physics and cosmology, and shared the 2001 Sakurai Prize for Theoretical Particle Physics for the development of the "Heavy Quark Effective Theory" (HQET), a mathematical formalism that enables physicists to make predictions about otherwise intractable problems in the theory of the strong interactions of quarks. He has also published work on mathematical models for finance and risk assessment. Dr. Wise is a past Sloan Foundation Fellow, a Fellow of the American Physical Society, and a member of the American Academy of Arts and Sciences and of the National Academy of Sciences.

Past PI Talks:

Talks by Mark Wise

Quantum Loops in de Sitter space and Scale Dependent Galaxy Bias at Small Wave-Vectors

Mark Wise California Institute of Technology (Caltech) - Division of Physics Mathematics & Astronomy

The power spectrum for fluctuations in the number density of galaxies can be very different in shape from the power spectrum for fluctuations in the mass density at very small wave vectors (i.e., large length scales) if the primordial density fluctuations are non-Gaussian. I review this phenomena. (It  is fairly well known in the more astrophysical part of the cosmology community but less so in the particle physics part of the field.) Then I show that primordial non-Gaussianities that arise from quantum loop diagrams in de-Sitter space can give rise to this phenomena.

Asymmetric Dark Matter Bound States

Mark Wise California Institute of Technology (Caltech) - Division of Physics Mathematics & Astronomy
One of the simplest low energy effective theories with Asymmetric Dark Matter contains a gauge singlet Dirac Fermion for the dark matter and a gauge singlet scalar as the mediator that the dark matter decays into. In this model I discuss the spectrum of bound states (two body and multi-body) and the cosmological production/dissociation of dark matter two body bound states.