Preparation Noncontextuality and Continuous Transformations of Quantum Systems
APA
(2010). Preparation Noncontextuality and Continuous Transformations of Quantum Systems. Perimeter Institute. https://pirsa.org/10120064
MLA
Preparation Noncontextuality and Continuous Transformations of Quantum Systems. Perimeter Institute, Dec. 02, 2010, https://pirsa.org/10120064
BibTex
@misc{ pirsa_PIRSA:10120064, doi = {10.48660/10120064}, url = {https://pirsa.org/10120064}, author = {}, keywords = {Quantum Foundations}, language = {en}, title = {Preparation Noncontextuality and Continuous Transformations of Quantum Systems}, publisher = {Perimeter Institute}, year = {2010}, month = {dec}, note = {PIRSA:10120064 see, \url{https://pirsa.org}} }
Collection
Talk Type
Subject
Abstract
Traditionally, the focus on determining characteristic properties of quantum mechanics has been on properties such as entanglement. However, entanglement is a property of multiple systems. Another interesting question is to ask what properties are characteristic of single quantum systems. Two answers to this question are:
1.There is a continuous path of pure quantum states connecting any two quantum states [1], and,
2.Quantum mechanics is preparation noncontextual [2].
In this talk, I will discuss a link between these two answers to this question. In particular, I will establish some strict upper bounds on the maximum size of the set of quantum states that can be modelled in a preparation noncontextual, nonnegative theory and show that this set contains pure states that cannot be connected to any other pure state in the set. I will also discuss a common example of a preparation noncontextual model that allows negative values, namely, a discrete Wigner function, and establish necessary and sufficient conditions for bases of an arbitrary dimensional Hilbert space to have nonnegative Wigner functions, i.e., to admit a classical model. I will conclude with a discussion of some open problems.
[1] L. Hardy, quant-ph/0101012v4 (2001).
[2] R. W. Spekkens, Phys. Rev. A, 71, 052108 (2005)