Twistor Methods in N=4 SYM
APA
Skinner, D. (2011). Twistor Methods in N=4 SYM. Perimeter Institute. https://pirsa.org/11080052
MLA
Skinner, David. Twistor Methods in N=4 SYM. Perimeter Institute, Aug. 18, 2011, https://pirsa.org/11080052
BibTex
@misc{ pirsa_PIRSA:11080052, doi = {10.48660/11080052}, url = {https://pirsa.org/11080052}, author = {Skinner, David}, keywords = {}, language = {en}, title = {Twistor Methods in N=4 SYM}, publisher = {Perimeter Institute}, year = {2011}, month = {aug}, note = {PIRSA:11080052 see, \url{https://pirsa.org}} }
University of Cambridge
Collection
Talk Type
Abstract
I review how N=4 SYM can be reformulated as a theory on twistor space, and explain various calculations that have been performed there. In particular, twistors turn out to be a powerful tool for investigating the duality between scattering amplitudes and null polygonal Wilson Loops in the planar limit. The BCFW recursion relations are interpreted as the loop equations for a supersymmetric generalization of the Wilson Loop.