A Theoretical Realization of a Fractional Quantized Hall Nematic
APA
Mulligan, M. (2011). A Theoretical Realization of a Fractional Quantized Hall Nematic. Perimeter Institute. https://pirsa.org/11120054
MLA
Mulligan, Michael. A Theoretical Realization of a Fractional Quantized Hall Nematic. Perimeter Institute, Dec. 06, 2011, https://pirsa.org/11120054
BibTex
@misc{ pirsa_PIRSA:11120054, doi = {10.48660/11120054}, url = {https://pirsa.org/11120054}, author = {Mulligan, Michael}, keywords = {Condensed Matter}, language = {en}, title = {A Theoretical Realization of a Fractional Quantized Hall Nematic}, publisher = {Perimeter Institute}, year = {2011}, month = {dec}, note = {PIRSA:11120054 see, \url{https://pirsa.org}} }
University of California, Riverside
Collection
Talk Type
Subject
Abstract
A fractional quantized Hall nematic (FQHN) is a novel phase in which a fractional quantum Hall conductance coexists with broken rotational symmetry characteristic of a nematic. Both the topological and symmetry-breaking order present are essential for the description of the state, e..g, in terms of transport properties. Remarkably, such a state has recently been observed by Xia et al. (cond-mat/1109.3219) in a quantum Hall sample at 7/3 filling fraction. As the strength of an applied in-plane magnetic field is increased, they find that the 7/3 state transitions from an isotropic FQH state to a FQHN. In this talk, I will provide a theoretical description of this transition and of the FQHN phase by deforming the usual Landau-Ginzburg/Chern-Simons (LG/CS) theory of the quantum Hall effect. The LG/CS theory allows for the computation of a candidate wave function for the FQHN phase and justifies, on more microscopic grounds, an alternative (particle-vortex) dual theory that I will describe. I will conclude by (qualitatively) comparing the results of our theory with the Xia et al. experiment.