Randomness Compression in Networks
APA
Uchibori, Y. (2019). Randomness Compression in Networks. Perimeter Institute. https://pirsa.org/19080080
MLA
Uchibori, Yukari. Randomness Compression in Networks. Perimeter Institute, Aug. 13, 2019, https://pirsa.org/19080080
BibTex
@misc{ pirsa_PIRSA:19080080, doi = {10.48660/19080080}, url = {https://pirsa.org/19080080}, author = {Uchibori, Yukari}, keywords = {Quantum Foundations}, language = {en}, title = {Randomness Compression in Networks}, publisher = {Perimeter Institute}, year = {2019}, month = {aug}, note = {PIRSA:19080080 see, \url{https://pirsa.org}} }
Abstract
Randomness is a valuable resource in both classical and quantum networks and we wish to generate desired probability distributions as cheaply as possible. If we are allowed to slightly change the distribution under some tolerance level, we can sometimes greatly reduce the cardinality of the randomness or the dimension of the entanglement. By studying statistical inequalities, we show how to upper bound of the amount of randomness required for any given classical network and tolerance level. We also present a problem we encounter when compressing the randomness in a quantum network.