PIRSA:21030006

Sphere packings, universal optimality, and Fourier interpolation

APA

Viazovska, M. (2021). Sphere packings, universal optimality, and Fourier interpolation. Perimeter Institute. https://pirsa.org/21030006

MLA

Viazovska, Maryna. Sphere packings, universal optimality, and Fourier interpolation. Perimeter Institute, Mar. 24, 2021, https://pirsa.org/21030006

BibTex

          @misc{ pirsa_PIRSA:21030006,
            doi = {10.48660/21030006},
            url = {https://pirsa.org/21030006},
            author = {Viazovska, Maryna},
            keywords = {Other},
            language = {en},
            title = {Sphere packings, universal optimality, and Fourier interpolation},
            publisher = {Perimeter Institute},
            year = {2021},
            month = {mar},
            note = {PIRSA:21030006 see, \url{https://pirsa.org}}
          }
          

Maryna Viazovska

L'Ecole Polytechnique Federale de Lausanne (EPFL)

Talk number
PIRSA:21030006
Collection
Talk Type
Subject
Abstract

In this lecture we will show that the E8 and Leech lattices minimize energy of every potential function that is a completely monotonic function of squared distance (for example, inverse power laws or Gaussians). This theorem implies recently proven optimality of E8 and Leech lattices as sphere packings and broadly generalizes it to long-range interactions. The key ingredient of the proof is sharp linear programming bounds. To construct the optimal auxiliary functions attaining these bounds, we prove a new interpolation theorem. This is the joint work with Henry Cohn, Abhinav Kumar, Stephen D. Miller, and Danylo Radchenko.