Discontinuous collocation methods and self-force applications
APA
Markakis, C. (2021). Discontinuous collocation methods and self-force applications. Perimeter Institute. https://pirsa.org/21060005
MLA
Markakis, Charalampos. Discontinuous collocation methods and self-force applications. Perimeter Institute, Jun. 07, 2021, https://pirsa.org/21060005
BibTex
@misc{ pirsa_PIRSA:21060005, doi = {10.48660/21060005}, url = {https://pirsa.org/21060005}, author = {Markakis, Charalampos}, keywords = {Other}, language = {en}, title = {Discontinuous collocation methods and self-force applications}, publisher = {Perimeter Institute}, year = {2021}, month = {jun}, note = {PIRSA:21060005 see, \url{https://pirsa.org}} }
Queen Mary University of London
Talk Type
Subject
Abstract
Numerical simulations of extereme mass ratio inspirals face several computational challenges. We present a new approach to evolving partial differential equations occurring in black hole perturbation theory and calculations of the self-force acting on point particles orbiting supermassive black holes. Such equations are distributionally sourced, and standard numerical methods, such as finite-difference or spectral methods, face difficulties associated with approximating discontinuous functions. However, in the self-force problem we typically have access to full a-priori information about the local structure of the discontinuity at the particle. Using this information, we show that high-order accuracy can be recovered by adding to the Lagrange interpolation formula a linear combination of certain jump amplitudes. We construct discontinuous spatial and temporal discretizations by operating on the corrected Lagrange formula. In a method-of-lines framework, this provides a simple and efficient method of solving time-dependent partial differential equations, without loss of accuracy near moving singularities or discontinuities. This method is well-suited for the problem of time-domain reconstruction of the metric perturbation via the Teukolsky or Regge-Wheeler-Zerilli formalisms. Parallel implementations on modern CPU and GPU architectures are discussed.